
Robustness and Accuracy of 

Donor Search Algorithms on 

Partitioned Unstructured Grids

Beatrice Roget and Jay Sitaraman

University of Wyoming



Outline

• Motivation

– Introduction to PUNDIT

– Characterization of search robustness issues

– Description of current search algorithm 
(Approximate Inverse Map)

• Alternating Digital Tree Search

• Exact Inverse Map

• Performance results for few test cases

• Conclusions



What is PUNDIT?

• PUNDIT stands for Parallel Unsteady Domain Information Transfer
– Domain connectivity module in HELIOS (Developed through DoD/HIARMS/CREATE-AV 

program) 

• PUNDIT provides fully automated domain connectivity support in parallel (distributed 
memory) computing systems 

– Requests only local grid and solution data as known to solvers

– Uses solver based grid partitioning

• Salient Features of PUNDIT 

– Implicit fringe determination search strategy, i.e fringes are not explicitly specified

– In the case of multiple overlapping grids, grids with best resolution is used for flow 
solution and all others are interpolated

– More search operations than traditional explicit hole-cutting techniques since 
candidate receptor points can include the entire grid

– Minimum hole-cutting using ray-tracing

Sitaraman, J., Floros, M., Wissink, A. and Potsdam, M., “Parallel Domain Connectivity Algorithm 
For Unsteady Flow Computations Using Overlapping And Adaptive Grids”, Journal of 
Computational Physics, Vol. 229, Issue 12, June 2010.



Implicit Fringe Determination

Interpolate flow variables between multiple meshes and solvers every solution iteration

Determine fringes, donors, hole points, interpolation weights (Domain Connectivity)

Explicit hole 

cutting

Implicit hole 

cutting

•Automation

•Optimal connectivity

•Interpolation 

accuracy

•More expensive

PEGASUS ( Rogers 2003) 

NAVAIR (Lee 2004)



Implicit-hole cutting

Overlapping  mesh 

system

Implicit-hole cutting 

procedure attempts to 

find donor cells for all

grid nodes

Donors are selected if 

they have better 

resolution capacity

Resolution capacity : 

Heuristic parameter that 

quantifies solution quality 

(Cell volume is used now for 

donor cells and averaged 

cell volume for grid nodes)

Fringes: 

Grid nodes that could  

find donor cells of better 

resolution capacity, flow 

solution will be 

interpolated to these 

nodes

Hole points: 

Grid nodes that could not 

find donors but were 

found inside a solid wall

Solver points:

Grid nodes were flow 

variables are being 

solved

Fringes and solver points 

are mutually exclusive to 

maintain donor quality



AGARD A2 slotted airfoil solution



Original Search Algorithm

• Meta-data structure 

– Approximate Inverse Map (aIM) for efficient search

(a) Intersecting spheres 

(partitioned grids shown) (b) Oriented bounding 

boxes created using inertial 

bisection

(c) Inverse map is created by dividing the 

bounding boxes in to smaller sub-blocks 

and re-ordering the cells based on “cell-

center” containment

(d) Only sub-blocks that 

contain mesh cells are 

shown . 



Donor search using stencil walk

Vision space bins
Spiral search path

receiver point

Stencil walk path 



Search Issues: Orphans and Incomplete Fringes

• Orphan point

– Field point that immediately borders a hole-point                                 
(both near-body and off-body)

– Compulsory receptor that did not get a donor                                        
(only in near-body meshes)

• Incomplete Fringe point

– Field point that contain a hole-point in its discretization stencil              
(both near-body and off-body)

Incomplete 
Fringe point

Orphan point 
(borders hole point)

Orphan point
(compulsory receptor)



•We found most test cases have a few off-body orphans and incomplete 

fringes

•Further investigation showed that most of these orphans are generated 

because the donor-search fails at partition boundaries 

•Problem may be in the extension of the stencil-walk algorithm 

(especially to walk back into the domain) 

Orphan point 

Viscous wall 

boundary

Partition 

boundary

Search Issues: Orphans and Incomplete Fringes



Grid boundary

Query point

Subblock 

containing

query point

No cell center in subblock ���� spiral search

Orphan point problem: example



Spiral search region

Closest cell center 

= start point for

stencil walk

stencil walk

Orphan point problem: example



Exit domain

�Spiral search 

for possible walk-back

Spiral search region

Orphan point problem: example



boundary faces 

within spiral search region

(centroid in subblock)

Orphan point problem: example



Spiral search region

���� Walk-back point is missed  because boundary face (center) 

is outside of spiral search region

Walk-back point boundary face 

(center) 

���� orphan point

Orphan point problem: example



Algorithm adapted from: “An alternating 

digital tree (ADT) algorithm for 3D 

geometric searching and intersection 

problems”

Javier Bonet, Jaime Peraire, International 

Journal for Numerical Methods in 

Engineering, 1991

Standard ADT search problem in 2D: 

Given a list of elements (in 2D, elements=2D points) :   points 

determine all elements inside a search region            :   limits  

i.e.    Determine all points such that xmin < xi < xmax

ymin < yi < ymax

Alternating Digital Tree (ADT)

x1 x2 …. xN

y1 y2 …. yN{ }
xmin xmax

ymin ymax{ }

Example in 2D:

Search region

Elements

xmin

y

xmax

ymin

ymax

x

- Realized that we need a more robust search algorithm



Example in 2D:

y

x

Step 1 : organize elements in a binary tree structure :

- At each tree node, divide elements into two groups 

according to position along a dimension 

(using median will result in a balanced tree)

- Alternate dimensions

- Each tree node is associated with 

an element and a region of space

Alternating Digital Tree (ADT)



Example in 2D:

search 

region

Overlap ���� check 2

Overlap 

���� check 3

No overlap 

���� Ignore 7, 4, 5

Overlap 

���� check 6

No overlap 

���� Ignore 1

Step 2 : search the ADT for elements inside search region:

- At each tree node,  check for region overlap with search region

- If overlap, check for element containment

- If no overlap, ignore all node descendants

Alternating Digital Tree (ADT)



Adapting the ADT algorithm for PUNDIT

Elements in ADT are cell bounding boxes

i.e., 6D elements : 

xl yl   zl   xu yu   zu { }

xl yl   zl{ }

xu yu   zu { }

PUNDIT problem: find the element containing 

Point P = { xP yP   zP } i.e. bound search point coord.

i.e.    xl < xP <  xu

yl < yP <  yu

zl < zP <  zu

Lower corner    

Upper corner    

ADT problem: find the element(s) inside search region

i.e. bound element coordinates 

0  < 

0  <

0  <

<  1

<  1

<  1

xl <   xP

yl <   yP

zl <   zP

0  < 

0  <

0  <

<   1

<   1

<   1

xP <    xu

yP   <    yu

zP <    zu

Element coordinates

Search region limits



1/ Initial guess for stencil walk should always be inside target subblock :

2/ In case of stencil walk exiting grid boundary, check all other boundary faces

Inside target subblock (by bounding box) :

start point 

query point

Improving robustness

Boundary faces 

In subblock 

(by bounding box)

� even number of new intersections: 

query point is outside grid domain

� odd number of new intersections:

query point is inside grid domain

(a donor cell can be identified)



Advantages of improved method (Exact Inverse Map) 

1/ removes need for time-consuming spiral search

2/ query points in subblocks with no true intersection 

with grid domain can be identified

immediately as field points

3/ Robust: no orphan point should be generated

Cost:

Need to identify a cell point inside each subblock to serve 

as stencil walk initial guess: increased preprocessing time

Improving robustness



Problem = Identifying a cell point inside each subblock without cell center 

(to serve as stencil walk initial guess)

This is done by geometric considerations: 

if such a point exists, one of the following must be true:

a cell vertex is inside the subblock (case 1)

a cell edge intersects a face of the subblock (case 2)

a cell face intersects an edge of the subblock (case 3)

a cell contains the subblock entirely (case 4)

Otherwise, no such point exists and the subblock has no true 

intersection with the grid domain (case 5)

For each subblock without cell center, cells with bounding box 

intersection are identified. The unique list of vertices, edges, and 

faces they are composed of is then extracted. Since cases 1 to 5 are 

increasingly time-consuming to identify, they are checked in this 

order. 

Cell point search



case 1: cell vertex inside subblock

cell vertex 

Cell center 

(outside subblock)

Cell point 

inside subblock

Cell point search: case 1



case 2: cell edge intersects subblock face

Cell edge/SB face  

intersection points

Cell center 

(outside subblock)

Cell point 

inside subblock

Cell point search: case 2



case 3: cell face intersects subblock edge

Cell face/ SB edge  

intersection points

Cell center 

(outside subblock)

Cell point 

inside subblock

Cell point search: case 3



case 4: cell entirely 

contains subblock

Need only check if one vertex 

of subblock is inside cell

Cell point 

inside subblock = 

subblock centroid

Cell point search: case 4



25 subblocks

PUNDIT problem:  example in 2D



25 subblocks  ------ 16 subblocks with cell center

PUNDIT problem:  example in 2D



25 subblocks  ------ 16 subblocks with cell center

7 subblocks with cell point

PUNDIT problem:  example in 2D



25 subblocks  ------ 16 subblocks with cell center

7 subblocks with cell point

2 subblocks with no grid intersection

PUNDIT problem:  example in 2D



1 boundary intersection ���� query point outside domain

query point

Search example in 2D

Initial guess



query point outside domain

Search example in 2D



2 boundary intersections ���� query point inside domain

Initial guess

donor cell

query point

Search example in 2D



donor cell

Initial guess

query point

Search example in 2D



20 40 60 80

0

5

10

15

20

20 40 60 80

0

2

4

6

8

10

20 40 60 80

0

20

40

60

80

% of subblocks containing cell centers

T
im

e
 (

se
c)

TRAM UH60 MDART

Optimal Subblock Size ?

• Pre-processing time decreases as sub-block size increases 

(less sub-blocks without cell center)

• Search time increases as sub-block size increases 

(more cells to search among)

• Optimal subblock size observed to be such that 

about 20% subblocks contain cell centers (20% cell containment)

Preprocessing time

Search  time

(NB/OB)

Total time
Total time Total time

Sub-block size 



Near-Body cells 0.85 Millions

Off-Body cells 17.33 Millions

Nb of Processors 16

Results: TRAM case



RECEPTORS ORPHANS

ADT method 223326 0

approx.  Inverse 

Map method
222827    (-499) 0

exact Inverse Map 

method
223326       (-0) 0

ACCURACY

Results: TRAM case

0

50

100

150

200

Task share

(% of total time per time step)

ADT
approx. 

Inverse Map

exact

Inverse Map

Total time

per time step (sec)

ADT aIM eIM

SPEED

43% 

solve

< 1% preproc

57%

search

76%

1%

23%

94%

2%4%



Near-Body cells 4.57 Millions

Off-Body cells 7.3 Millions

Nb of Processors 128

Results: UH60 case



Task share

(% of total time per time step)

ADT
approx. 

Inverse Map

exact

Inverse Map

Total time

per time step (sec)

ADT aIM eIM

RECEPTORS ORPHANS

ADT method 81223 0

approx.  Inverse 

Map method
80998    (-225) 50

exact Inverse Map 

method
81203     (-20) 0

ACCURACY

SPEED

0

10

20

30

40

50

66%

solve < 1%

preproc.

34%

search

93%

< 1%
7%

97%

< 1%
3%

Results: UH60 case



Near-Body cells 15.57 Millions

Off-Body cells 65.29 Millions

Nb of Processors 240

Results: MDART case



30% 

(solve)

3% 

(preproc)

67% 

(search)

76%

< 1%

23%

86%

2%
12% 

Task share

(% of total time per time step)

ADT
approx. 

Inverse Map

exact

Inverse Map

0

20

40

60

80

Total time

per time step (sec)

ADT aIM eIM

RECEPTORS ORPHANS

ADT method 1370834 0

approx.  Inverse 

Map method
1369041    (-1793) 350

exact Inverse Map 

method
1370784       (-50) 10

ACCURACY

SPEED

Results: MDART case



Conclusions

Explored two methods for donor searches (ADT and eIM)

• ADT search
– most robust and accurate for donor search  (no orphans or incomplete fringes in any 

case)

– 10-20 times slower than both aIM and eIM methods

– 2-3 orders of magnitude faster than brute force

– Gold standard to verify accuracy of donor search

• Exact Inverse Maps (eIM)
– Accuracy comparable to ADT

– 2-5 times faster than approximate inverse maps

– Optimal sub-block size found to correspond to 20% cell center containment

This work was supported by grant funding through the Army Research Office with 

Dr. Roger Strawn as the Technical Monitor


