FoamedOver: A Dynamic Overset Grid Implementation in OpenFOAM

David Boger Eric Paterson Ralph Noack

Penn State University, Applied Research Lab State College, PA USA

10th Symposium on Overset Composite Grids and Solution Technology 20 - 23 September 2010 NASA Ames Research Center Moffet Field, California USA

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Acknowledgements

- Development of foamedOver has been sponsored by: CREATE-Ships, Myles Hurwitz, Project Manager
- Supercomputing resources have been provided by: DOD High–Performance Computing Modernization Program (HPCMP) and the Army Research Laboratory (ARL) DOD Supercomputing Resource Center (DSRC)

Outline

Background

- OpenFOAM
- Suggar++
- DiRTlib

3 foamedOver

Code Verification and Example Applications

- Static Meshes
- Oynamic Meshes

5 Validation

Objectives

- Develop a library that provides dynamic–overset mesh capability for NavyFOAM (and other naval applications/solvers).
 - NavyFOAM is an OpenFOAM–based incompressible, multiphase, free–surface hydrodynamics solver.
- Adhere to OOP standards of OpenFOAM
- Library design goals:
 - Build on top of Suggar++ and DiRTlib.
 - Instrumentation of solvers with overset capability should be simple.
 - Dynamic–mesh capability for a variety of motion types: table look–up; analytical functions; 6DOF equations of motion.
 - Utilization of the run-time selection mechanism for motion type and algebraic solvers.
 - Simulation control through dictionaries.

PENNSTATE

Objectives

Intended Use

- Intended use is naval hydrodynamics: surface ships; submarines; weapons systems.
- CREATE-Ships: Develop CFD tools which can impact design and acquisition
 - Rapid Design Capability: Automation of CFD Process
 - Hull–form optimization and ship motions in ocean waves

Overview

- OpenFOAM is a free-to-use Open Source numerical simulation software with extensive CFD and multi-physics capabilities.
- Free-to-use means using the software without paying for license and support, including massively parallel computers.
- Software under active development, capabilities mirror those of commercial CFD
- Substantial user base in industry, research labs, and universities
- Possibility of extension to non-traditional, complex or coupled physics
- Physics model implementation through equation mimicking

Main components

- Discretization: General-polyhedral finite-volume method. Numerous schemes are available.
- Lagrangian particle tracking.
- Finite Area Method: 2-D FVM on curved surface in 3-D
- Libraries for turblence modeling (RANS, DES, LES); thermophysical properties; combustion; ...
- Automatic mesh motion, support for topological changes
- Parallelism via domain decomposition. Methods include metis, scotch, simple, and hierarchial

Equation Mimicking

- Flexible handling of arbitrary equations sets
- Natural language of continuum mechanics: partial differential equations
- Example: turbulence kinetic energy equation

$$\frac{\partial k}{\partial t} + \nabla \cdot (\mathbf{U}k) - \nabla \cdot [(\nu + \nu_t) \nabla k] = \nu_t \left[\frac{1}{2} \left(\nabla \mathbf{U} + \nabla \mathbf{U}^T\right)\right]^2 - \frac{\epsilon_0}{k_0} k$$

Objective: Represent differential equations in their natural language

 Correspondence between implementation and the original equation is clear

Top-Level Applications and Utilities

Applications

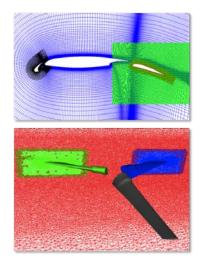
- Libraries encapsulate interchangeable models with run-time selection
- New models provide functionality by adhering to a common interface
- Custom top-level solvers written for a class of physics, e.g. compressible combusting LES or VOF free-surface flow
- Code clarity is paramount: existing solvers act as examples for further development or customization

Top-Level Applications and Utilities, Cont.

Utilities

- ► Pre-processing, data manipulation, mesh-to-mesh mapping etc.
- Mesh import and export, mesh generation and manipulation
- Parallel processing tools: decomposition and reconstruction
- Post processor hook-up (Paraview) and data export (EnSight, Tecplot, Fieldview)
- Solution analysis, PyFoam
- Customized Data Extraction and Analysis
 - User-defined on-the-fly data extraction: function objects
- This is just a "standard set": Users write their own applications using the library

OpenFOAM at Penn State


- PSU OpenFOAM community has significantly grown to include faculty and students from:
 - Applied Research Laboratory
 - Mechanical Engineering
 - Bioengineering
 - Nuclear Engineering
 - Aerospace Engineering
 - Research Computing and Cyberinfrastructure

- Application areas include:
 - Naval hydrodynamics
 - Fluid–structure interaction
 - Wind– and hydro–turbines
 - Atmospheric turbulence and LES
 - Explosives detection
 - Cardio–vascular hemodynamics and blood pumps
 - Electron beam-physical vapor deposition
 - Nuclear–reactor dynamics
 - Rotorcraft icing
 - CFD education

Suggar++1

- Overset grid assembly software
- Performs hole-cutting, donor search, overlap minimization
- Static or dynamic (moving body) assemblies
- Structured and unstructured grids
- Node-centered and cell-centered flow solvers
- Stand-alone executable (static) or library calls for dynamic grids (libsuggar.so)

Ralph W. Noack, David A. Boger, Robert F. Kunz, and Pablo M. Carrica, "Suggar++: An Improved General Overset Grid Assembly Capability," AIAA Paper 2009-3992

Boger, Paterson, and Noack (PSU/ARL)

DISTRIBUTION STATEMENT A

PENNSTATE

DiRTlib²

DiRTlib is a solver-neutral library that simplifies the addition of an overset capability to a flow solver by encapsulating the required operations

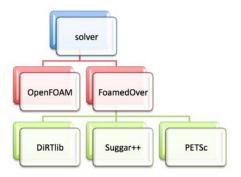
- Acquire interpolation stencils via file I/O or direct communication with libSuggar++
- Provides higher-level methods to transfer field data from donors to receptors and interpolate
- Provides lower-level access to donor member indices and weights to help build implicit global matrix

drt_get_dci()

drt_generate_transmit_apply()

drt_get_donor_members_donor_weights()

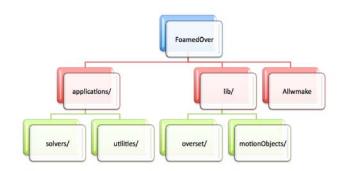
² Ralph W. Noack, "DiRTlib: A Library to Add an Overset Capability to Your Flow Solver" AIAA 2005-5116


Boger, Paterson, and Noack (PSU/ARL)

DISTRIBUTION STATEMENT A

foamedOver

FoamedOver is an interface between OpenFOAM and other specialized libraries


- DiRTlib Library to facilitate the addition of overset capability to any flow solver
- Suggar++ Overset grid assembly software
- PETSc Library of data structures and routines for the parallel solution of large systems of linear and non-linear equations

PENNSTATE

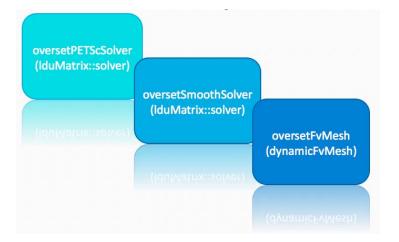
foamedOver

FoamedOver is a collection of custom classes, solvers, and applications.

foamedOver

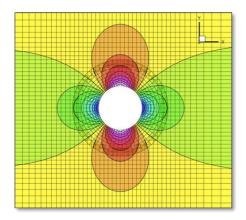
FoamedOver is a **stand-alone library** that provides a dynamic overset grid capability to any OpenFOAM solver

- No changes are required to the OpenFOAM library itself
- Any OpenFOAM solver is made overset-capable by the insertion of a half-dozen lines of code ...
- ...and the use of custom run-time selectable objects


```
# include "oversetObject.H"
# include "createOverset.H"
U *= cellMask;
overset.updateFringeValues(U);
```

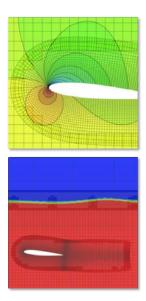
dynamicFvMesh oversetFvMesh;

mesh.update()


Run–Time Selectable Objects

Potential Foam

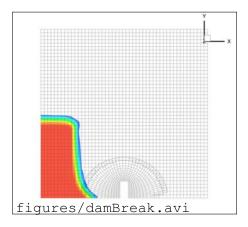
- cylinder
- steady
- potential flow


Boger, Paterson, and Noack (PSU/ARL)

Overset dictionary for static meshes

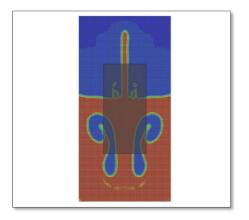
constant/oversetDict

Boger, Paterson, and Noack (PSU/ARL)



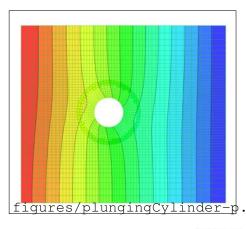
- submerged hydrofoil^a
- steady
- incompressible multiphase

^aJ. Duncan, "The Breaking and Non-Breaking Wave Resistance of a Two-Dimensional Hydrofoil," *J. Fluid Mech*, 126:507–520, 1983.



- extension of damBreak tutorial
- unsteady
- incompressible multiphase

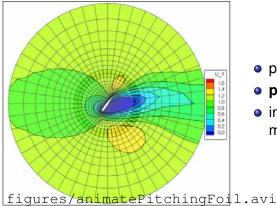
compressibleInterFoam


- extension of depthCharge tutorial
- unsteady
- compressible multiphase

Code verification on dynamic meshes

Unsteady potential flow

- cylinder
- prescribed mesh motion
- unsteady
- unsteady potentail flow is a series of steady solutions



Dictionaries for dynamic mesh motion

constant/dynamicMeshDict and constant/oversetDict

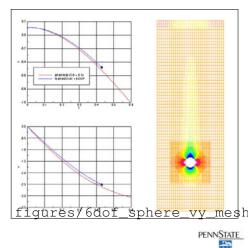
```
// + + + + +
                                                     + + + + + + + //
isOverset
               ves;
readFromDisk
               no;
isDynamicOverset yes;
useLibSuggar
            yes;
motionType multibody;
bodies
 projectile
     oversetMotion specifiedTrajectoryOversetMotion;
     translationTable "constant/translations";
     rotationTable "constant/rotations";
);
                                *****
                                                                            PENNSTATE
```

Code verification on dynamic meshes icoDyMFoam

• pitching foil

• prescribed mesh motion

• incompressible, laminar, mulitphase flow


Boger, Paterson, and Noack (PSU/ARL)

PENNSTATE

Code verification on dynamic meshes

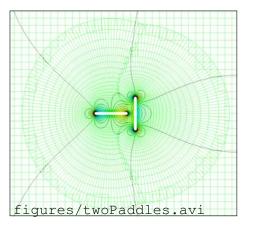
interDyMFoam with 6DOF

- falling cylinder
- 6DOF mesh motion
- incompressible, multiphase, laminar flow
- Compare to simplified analytical solution for free-falling body with constant CD

Overset dictionary for dynamic meshes with 6DOF motion

constant/oversetDict

```
* * * * //
                                                           *
                                                             * *
is0verset
                yes;
readFromDisk
                no;
isDynamicOverset yes;
useLibSuggar
              ves;
motionTvpe
          multibodv:
bodies
 ship
    oversetMotion sixDofOversetMotion;
);
                                     ***************
                                                           **************
```



Body dictionary for sixDofOversetMotion 0/ship

mass	m	[1 0 0 0 0 0 0]	0.500;
momentOfInertia			-
momentorinertia	J	[1 2 0 0 0 0 0]	(10 10 10);
equilibriumPosition	х	[0 1 0 0 0 0 0]	(0 0.1144 0);
linearSpring	k	[1 0 -2 0 0 0 0]	(0 0 0);
linearDamping	d	[1 0 -1 0 0 0 0]	(0 0 0);
// Xabs = Xeg + Xre:	L		
Xrel	Xrel	[0 1 0 0 0 0 0]	(0 0 0);
U	U	[0 1 -1 0 0 0 0]	$(0 \ 0 \ 0);$
Uold	Uold	[0 1 -1 0 0 0 0]	(0 0 0);
rotationVector		(0 0 1);	
rotationAngle	rotationAngle	[0 0 0 0 0 0 0]	0;
omega	rotUrel	$[0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0]$	(0 0 0);
force	f	[1 1 -2 0 0 0 0]	(0 0 0);
moment	m	[1 2 -2 0 0 0 0]	(0 0 0);
forceRelative	fRel	[1 1 -2 0 0 0 0]	(0 0 0);
momentRelative	mRel	[1 2 -2 0 0 0 0]	(0 0 0);
			(0 0 0);

Code verification on dynamic meshes

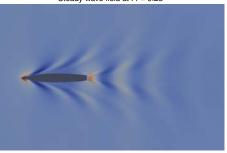
Complex mesh motion: interlacing paddles

- interlacing rotating paddles
- motion would be very difficult to resolve with GGI, RBF, or Laplacian dynamicFvMesh methods.

Boger, Paterson, and Noack (PSU/ARL)

Code verification on dynamic meshes

Water entry of projectiles

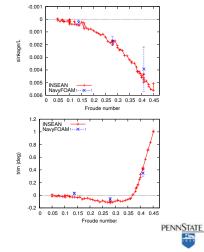

Boger, Paterson, and Noack (PSU/ARL)

Validation for intended–use applications

Model 5415: an international benchmark for a naval surface combatant

- Gothenburg 2010 A Workshop on CFD in Ship Hydrodynamics, Dec 8-10, 2010
- 49th AIAA Aerospace Sciences Meeting, 4-7 January 2011
 - Steady resistance

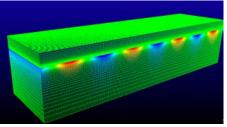
 - Ships in waves (diffraction)
 - Roll damping with bilge



Validation for intended-use applications

Model 5415: an international benchmark for a naval surface combatant

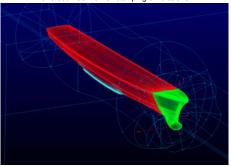
- Gothenburg 2010 A Workshop on CFD in Ship Hydrodynamics, Dec 8-10, 2010
- 49th AIAA Aerospace Sciences Meeting, 4-7 January 2011
 - Steady resistance
 - Dynamic sinkage and trim (2DOF)
 - Ships in waves (diffraction problem)
 - Roll damping with bilge keels(1DOF)


Comparison to experiment: dynamic sinkage and trim vs. speed

Validation for intended-use applications

Model 5415: an international benchmark for a naval surface combatant

- Gothenburg 2010 A Workshop on CFD in Ship Hydrodynamics, Dec 8-10, 2010
- 49th AIAA Aerospace Sciences Meeting, 4-7 January 2011
 - Steady resistance
 - Dynamic sinkage and trim (2DOF)
 - Ships in waves (diffraction problem)
 - Roll damping with bilge keels(1DOF)


Background mesh with ambient waves

Validation for intended-use applications

Model 5415: an international benchmark for a naval surface combatant

- Gothenburg 2010 A Workshop on CFD in Ship Hydrodynamics, Dec 8-10, 2010
- 49th AIAA Aerospace Sciences Meeting, 4-7 January 2011
 - Steady resistance
 - Dynamic sinkage and trim (2DOF)
 - Ships in waves (diffraction problem)
 - Roll damping with bilge keels(1DOF)

Summary

- foamedOver is a collection of custom classes, solvers, and applications which adhere to OpenFOAM object-oriented programming practices, and which utilizes the existing tools Suggar++, DiRTlib, and PETSc.
- It is a **stand-alone library** that provides a dynamic overset grid capability to any OpenFOAM solver.
- motionObjects have been developed which permit table-lookup, analytical, and 6DOF motions.

