

Domain Decomposition for Overset Grid Assembly

Ralph Noack David Boger

Penn State University Applied Research Laboratory

- Motivation
- Parallel Decomposition
 - Overset Work
 - New partitioning approach
 - Impact of Partition Boundaries on Overset Work
- Data migration
- Summary

- Overset approach
 - Simplify grid generation for complex geometry
 - Enable moving body simulation
- Must compute overset domain connectivity information at each time step
 - Can be time consuming
 - Flow solver scales better than overset computation
- Parallel execution required to reduce wall clock
 - Scaling requires partitioning

- Parallel execution requires efficient distribution of work across available resources
- Better performance is achieved by minimizing communication between processes
- Scalable parallel execution requires
 - Distribution of work without increasing work
 - Low communication overhead

Flow Solver Parallel Decomposition

- Work
 - Proportional to number of grid elements
 - Balanced by putting equal numbers of elements on each parallel processor
 - No extra work because of partition boundary (just communication)
- Communication
 - Comprised of data exchanged between neighboring elements
 - Proportional to the number of grid element faces on the boundary between grid partitions
 - Minimized by minimizing number of faces on partition boundaries
- Decomposition
 - METIS software is typically used to partition the grid

Overset Connectivity and Parallel Decomposition

• Hole-Cutting

Identify locations inside geometry and behind symmetry planes

- Work
 - Related to the surface area of cutting geometry (or volume inside the geometry)
 - Grids that do not overlap geometry are not cut (no hole-cut work)
- Communication
 - Minimized by duplicating hole cut geometry
- Donor Search

Find interpolation source for fringe points

- Work
 - Related to the number of elements in the fringe grid in the overlap region
- Communication
 - Minimized by keeping fringe and donor on same rank
- Both are spatial connections
 - Given x,y,z find containing geometry or donor

Overset Connectivity Spatially Connected

- Work
 - Flow solver work is over the entire domain
 - Overset domain connectivity work is only in regions of overlapping grids
 - Large portion of domain is inactive
- Communication
 - Flow solver data exchange is along neighbor connections
 - Overset connectivity data exchange is along spatial connections
 - Using the flow solver decomposition has high probability of maximizing communications
 - Overlapping grids are assigned to different ranks
 - Overset communication: need a spatial decomposition

Flow Solver Decomposition

- Cutplane with partitioned grids colored by rank
- 32 processors
- Only the two gray grid partitions are on the same rank, but they do not overlap

- Suggar++ uses a new spatial decomposition approach
 - A specified volume is used to assign rank
 - Elements that overlap the same volume are assigned to the same rank (regardless of grid)
 - Currently have two spatial decomposition volume (SDV) types
 - Cartesian box
 - Cylinder
 - Also have ParMETIS for flow-solver-type decomposition

Spatial Decomposition Volume Cylinder

- Cylindrical slices assigned to different ranks
- Outer (Cyan) portion of background grid is inactive
- Elements overlapping cylinder are assigned to rank
- Slice of (rigid) blade will always overlap slice of background grid
- Fringes & donors on same rank

Spatial Decomposition For Store Separation

- Store separation is not constrained to a cyclic region
 - Cylindrical spatial decomposition is inappropriate
 - Cartesian Spatial Decomposition Volume can be used
 - Bounding box of store grid
 - Volume outside the bounding box is inactive
- Will work well in minimizing communications for static problems
- Data migration needed for moving body

- Parallel partitioning introduces a partition boundary
 - Flow solver: does not change the work
 - Linear scalability
 - Overset grid assembly: can increase the work!
 - Limits scalability

Overset Donor Search No Partitions

- Start donor search from any location
- Will find donor if not crossing a grid boundary
- Parallel partitioning introduces a partition boundary

Overset Donor Search With Partitions

- Start donor search from same location
- Search dead ends at boundary
- Restart from other boundary elements
- Exhaust possible starts: is not in the red grid
- Fringe & Donor in same grid: same problem

Partition boundary requires more donor searches!

Overset Donor Search With Partitions

- Partition boundary requires more donor searches!
 - Work increases with number of partitions
 - Limits scalability
- Ways to reduce searches
 - Suggar++ uses a Boundary Element Alternating Digital Tree to find candidate starts elements
 - Beggar uses a Binary Space Partition
 Tree to determine if point is inside grid
 - All still require extra work

- To eliminate extra searches
 - 1. Donor search for fringe must search in a single partition
 - 2. Must find ALL possible donors
- SDV partitioning provides mechanism
 - 1. Assign fringe to rank based upon SDV
 - 2. Rank must contain all elements that overlap associated SDV
 - Elements are assigned to a unique rank/subgrid
 - Include fragments of other subgrids on a rank

Test Cases

- HART II grid
 - 4 blades + fuselage
 - 13.6 million points
 - 79.7 million elements
 - Node-centered assembly
- Eglin Wing/Pylon/Store
 - Store + Wing&Pylon grid
 - 1.3 million points
 - 7.5 million elements.
 - Cell-centered Assembly

ParMETIS vs Spatial Decomposition HART II

- Decomposition
 - 8 processors
 - ParMETIS
 - Flow solver type decomposition
 - Cylindrical SDV

- ParMETIS decomposition
 - NO donor searches on the same rank
- Spatial decomposition
 - ALL donor searches on the same rank

ParMETIS vs Spatial Decomposition HART II

- Compare work for a time step
 - Does not include I/O
- SDV: No Fragments and ParMETIS
 - Include extra searches due to partitioning
 - Differences in load balance
 - SDV has more searches on rank (less communication)
- SDV improves performance

Wing/Pylon Grid: Partitions 0,1,2

ParMETIS Partitions: NP=4 Eglin Wing/Pylon/Store

PENNSTATE

Wing/Pylon Grid: Partitions 1,2

ParMETIS Partitions: NP=4 Eglin Wing/Pylon/Store

This partitioning is not well suited to overset assembly

Wing/Pylon Grid: Partition 1

- Migration of grid data between ranks is required:
 - Cartesian SDV with moving bodies
 - Cylindrical SDV with non-rigid motion
 - Lead/Lag/Flap with rigid blade
 - Deforming blade
 - Load balancing
- Requires lots of work to modify grids in each partition

- Working for simple test case
 Very preliminary results
- Need algorithm for dynamic load balancing
 How to accurately measure work on rank
- Would like to have data migration/load balance run as a background process

- Work in computing overset domain connectivity information is significantly different than flow solver work
 - Work only in portion of domain
 - Communication is along spatial connections
- Partitioning can negatively impact overset Work

- Partitioning using new Spatial Decomposition Volume can significantly improve parallel performance for overset grid assembly
 - Reduce communication
 - Eliminate extra donor searches/work resulting from partition boundaries
- Data migration required for general use of SDV
 - Preliminary implementation within Suggar++

- Future work
 - Finish data migration
 - Dynamic load balancing by moving SDV boundaries
 - Internal grid adaptation

- Funding provided by
 - National Aeronautics and Space
 Administration under Agreement No.
 NNX07AU75A
 - New 6DOF Environment project through the DoD HPC Institute for HPC Applications to Air Armament.