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The Strand/Adaptive Cartesian Overset 
Approach for Engineering Design

(a) coarse surface, no adapt – mesh (b) coarse surface, no adapt – vorticity

(c) fine surface, no adapt – mesh (d) fine surface, no adapt – vorticity

(e) fine surface, adapt – mesh (f) fine surface, adapt – vorticity

Figure 8. Hybrid meshes used for the isolated TRAM calculation at θ = 14o and corresponding contours of
vorticity.
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• Automated + Accurate + Timely

• Advantages:
– automatic mesh generation

– high-order accuracy

– scalable, adaptable

– compact grid definition

• Rotorcraft applications
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Objectives and Scope

• Description of strand/adaptive Cartesian approach
– strand parameters: length, bending

• Validation results
– parametric studies

– test cases: wing, TRAM rotor, wing-body from DPW3

• Progress in strand grid development
– strand discretization strategy

– AMR multigrid convergence
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Helios Infrastructure
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• Helios - computational design tools for defense acquisition
– Computational Research and Engineering Acquisition Tools 

and Environments (CREATE)
– HPC Institute for Advanced Rotorcraft Modeling and 

Simulation (HIARMS)

• Multi-code Python-based parallel execution
– near-body strand-grids (NSU3D)

– off-body adaptive Cartesian grids (ARC3DC)

– Chimera overset communication



Strand-grid Components

distribution

pointing

clipped
nodes

surface definition

vector

uniform node

5



Determining Strand Length

• Boundary layer thickness estimates*:
– assumptions: flat plate, incompressible, zero pressure gradient

wall spacing
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surface mesh
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(a) strand grid elements (b) AMR grid hierarchy

Figure 1. Illustration of strand and adaptive Cartesian grids.

distribution along each strand is determined by specifying a wall spacing appropriate for a given Reynolds
number, the strand length, and the maximum allowable stretching ratio between adjacent strand nodes.
Either geometric or hyperbolic tangent node distributions are used. In this work we propose a method
of determining the strand length based on boundary layer thickness estimates from laminar or turbulent
boundary layer theory18 in order to extend the strands far enough to fully capture boundary effects. Flat
plate estimates for incompressible flow with zero pressure gradient yield the following expressions for laminar
and turbulent boundary layer thickness as a function of distance x along the plate:

δ(x)lam ≈ 5.0xRe
− 1

2
x , δ(x)turb ≈ 0.37xRe

− 1
5

x . (1)

The strand length, l, is then expressed as a multiple, K, of the boundary layer thickness at some characteristic
length of the problem, L, as

l = Kδ(L). (2)

The characteristic length, L, may vary for different components or bodies, such as a wing and fuselage.
Lastly, the clipping index is computed for each strand, which marks the last node to be solved by the strand
solver. The nodes beyond the clipping index are provided by interpolation from surrounding grids, which
may be Cartesian or strand. Clipping is necessary for sharp concave corners in which self-intersections may
occur.

Careful computation of strand pointing vectors is necessary to minimize excessive clipping close to solid
bodies as well as to generally increase grid smoothness. Pointing vectors at each node are initialized as the
average of the normal vectors of each face which touches the node. This averaging procedure minimizes
the deviations of the pointing vector from the surrounding face normal vectors, which increases its visibility
with respect to the surrounding faces.5 However, for sharp convex or concave corners, this procedure alone
leads to large gaps and overlaps in the resulting strand grid. To produce a more uniform strand grid, we
propose an iterative strand vector smoothing procedure. The smoothing procedure is derived from a local
optimization problem at each node, where a minimum of

f(n0) =
∑

i

(1− n0 · ni), i = 1, . . . , N (3)

is sought, where N is the number of nearest node neighbors to node 0. The minimization at each node
proceeds subject to a unit-length constraint,

g1(n0) = |n0|2 − 1. (4)

At planes of symmetry or inflow/outflow planes, we constrain the pointing vectors to lie within the plane of
unit normal nP by adding the following constraint:

g2(n0) = n0 · nP . (5)
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• Strand length parameter, K, for characteristic length, L:
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• Typical values for High Re: 10<K<20
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Strand Vector Smoothing

• Smooth pointing vectors to
– avoid self-intersection
– provide adequate coverage for 

sharp corners

• Initial pointing vectors are 
surface normals

• Smoothing optimization 
procedure:
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Figure 1. Illustration of strand and adaptive Cartesian grids.

distribution along each strand is determined by specifying a wall spacing appropriate for a given Reynolds
number, the strand length, and the maximum allowable stretching ratio between adjacent strand nodes.
Either geometric or hyperbolic tangent node distributions are used. In this work we propose a method
of determining the strand length based on boundary layer thickness estimates from laminar or turbulent
boundary layer theory18 in order to extend the strands far enough to fully capture boundary effects. Flat
plate estimates for incompressible flow with zero pressure gradient yield the following expressions for laminar
and turbulent boundary layer thickness as a function of distance x along the plate:

δ(x)lam ≈ 5.0xRe
− 1
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x , δ(x)turb ≈ 0.37xRe

− 1
5

x . (1)

The strand length, l, is then expressed as a multiple, K, of the boundary layer thickness at some characteristic
length of the problem, L, as

l = Kδ(L). (2)

The characteristic length, L, may vary for different components or bodies, such as a wing and fuselage.
Lastly, the clipping index is computed for each strand, which marks the last node to be solved by the strand
solver. The nodes beyond the clipping index are provided by interpolation from surrounding grids, which
may be Cartesian or strand. Clipping is necessary for sharp concave corners in which self-intersections may
occur.

Careful computation of strand pointing vectors is necessary to minimize excessive clipping close to solid
bodies as well as to generally increase grid smoothness. Pointing vectors at each node are initialized as the
average of the normal vectors of each face which touches the node. This averaging procedure minimizes
the deviations of the pointing vector from the surrounding face normal vectors, which increases its visibility
with respect to the surrounding faces.5 However, for sharp convex or concave corners, this procedure alone
leads to large gaps and overlaps in the resulting strand grid. To produce a more uniform strand grid, we
propose an iterative strand vector smoothing procedure. The smoothing procedure is derived from a local
optimization problem at each node, where a minimum of

f(n0) =
∑

i

(1− n0 · ni), i = 1, . . . , N (3)

is sought, where N is the number of nearest node neighbors to node 0. The minimization at each node
proceeds subject to a unit-length constraint,

g1(n0) = |n0|2 − 1. (4)

At planes of symmetry or inflow/outflow planes, we constrain the pointing vectors to lie within the plane of
unit normal nP by adding the following constraint:

g2(n0) = n0 · nP . (5)
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An intersection of two such planes may be handled by adding a similar constraint for the additional plane.
The above constrained optimization problem to obtain the pointing vectors may be solved with the

method of Lagrange multipliers at each node and updated with Jacobi iterations. For nodes with only the
constraint in Equation 4, such a solution procedure leads to the following updates to the pointing vectors at
each iteration, k:

nk
0 =

∑
i nk−1

i∣∣∑
i nk−1

i

∣∣ . (6)

Nodes with boundary plane constraints may be modified accordingly. After each Jacobi sweep of all nodes in
the surface mesh, the convergence of the smoothing iterations is checked. At each node a smoothing residual,
rs, may be defined as

rk
s,0 = 1− nk

0 · nk−1
0 , (7)

which is a measure of the change in the pointing vector angle from one iteration to the next. When the
global minimization of Equation 3 is complete, the smoothing residual will reduce to zero at each node. In
this work, a root mean square smoothing residual,

rs,RMS =

√ ∑
i(r

k
s,i)2

REAL(nNodes)
, (8)

is used to measure the degree to which the pointing vectors have satisfied the minimization procedure. Here,
nNodes is the number of nodes in the surface mesh.

During the smoothing process, the pointing vectors may bend far enough to exceed the visibility of the
manifold of local faces. If this happens, the prisms formed by the connection of adjacent strands may intersect
with the surface, resulting in clipping which extends all the way to the geometry surface. To avoid this as
much as possible, a visibility check is implemented before updating the pointing vector at each iteration.
If the proposed update would violate visibility, the pointing vector is not updated and is marked to avoid
future updates at subsequent iterations. As pointed out by Sharov et al.,19 some geometries exist where
visibility is impossible to satisfy, resulting in invalid prisms. In these cases clipping would necessarily extend
to the surface. All cases tested thus far have not exhibited this behavior, but the handling of clipping close
to or at the surface is an active area of research.

The main difference between strand grids and other prismatic approaches, such as the prismatic grids of
Kallinderis and Ward5 or Sharov and Nakahashi,6 is in the method of grid generation and storage. Strand
grids may be represented compactly by storing only the surface grid, pointing vector and clipping index
for each surface node, along with the one-dimensional distribution of strand nodes that is used for all
strands. The compact definition of strand grids favors scalability since the entire volume grid description
may be contained on every processor in most cases. Communication between partitions and between grid
components is simplified since the search for neighboring partitions may be performed quickly and locally on
each processor. Additionally, the structure in the strand direction facilitates the use of high-order methods.
While a dedicated strand grid flow solver is currently in development, the fully unstructured solver NSU3D8

is currently used to solve the flow on the strand grids. The solver is an edge-based node-centered code using
agglomeration multigrid and implicit line relaxation. Time accuracy is achieved with an implicit backward
difference formula, where each time step is resolved using dual time stepping. The code works on a variety
of grid types, including the prismatic cells of strand grids.

B. Adaptive Cartesian Grids

Adaptive Cartesian grids are used to cover the portion of the domain outside the strand grid region in the off-
body. The Cartesian grid system is stored as Berger and Colella20-style multilevel AMR grid hierarchy. All
coarse level grids are stored, including regions which underlay finer levels. This method of storage facilitates
high-order and multigrid algorithms. A graphic showing the grid structure is shown in Figure 1(b). The
off-body grid generation proceeds by defining an initial coarse level covering the entire domain. The grid
is subsequently refined, adding blocks of increasing refinement around regions near the outer extents of the
strand grids. The refinement procedure terminates when the local grid resolution meets or exceeds the
resolution of the strands, defined by the strand spacing at the clipping index. For strands in tight corners
with clipping near the surface, the local spacing may be quite small, requiring several levels of Cartesian
refinement. In practice 10-12 levels of refinement have been needed to telescope down into the tight corners
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• Smoothness measure:

no bending

(a) rs,RMS = 10−2 (no
bending)

(b) vorticity contours, rs,RMS = 10−2 (no bending)

(c) rs,RMS = 10−4 (d) vorticity contours, rs,RMS = 10−4

(e) rs,RMS = 5x10−6 (f) vorticity contours, rs,RMS = 5x10−6

(g) rs,RMS = 10−7 (h) vorticity contours, rs,RMS = 10−7

Figure 4. Mesh and vorticity contours for a square cylinder in cross flow at Re = 250 for varying amounts of
strand direction smoothing.

For all cases, the strand vector smoothing is terminated at a value of rs,RMS = 10−4, resulting in 5-10
smoothing iterations. The strand length parameter ranges between K = 10 and K = 20. The results of each
case are described in detail.

A. NACA 0015 Wing

We first demonstrate the strand-Cartesian method on an NACA 0015 wing at M = 0.1235, angle of attack
α = 12o, and Re = 1.5x106. Experimental data for this case is reported by McAlister and Takahashi.26
Several mesh configurations are generated for comparison, as shown in Table 3 and Figure 7, including
NSU3D stand-alone, hybrid-unstructured, and hybrid-strand with and without solution adaptivity in the
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Adaptive Cartesian Grids
• Stored as multi-level block 

structured hierarchy
– high-order methods
– multigrid algorithms

• Automatic refinement
– Geometry refinement to 

spacing at clipping index

– Solution refinement to 
features, vorticity

• Solver is ARC3DC
– 3rd order in time
– up to 5th order in space

• Automated mesh generation 
with SAMRAI (LLNL)

wall spacing
{

clipping index

pointing vector

surface mesh

1D node dist.

(a) strand grid elements (b) AMR grid hierarchy

Figure 1. Illustration of strand and adaptive Cartesian grids.

distribution along each strand is determined by specifying a wall spacing appropriate for a given Reynolds
number, the strand length, and the maximum allowable stretching ratio between adjacent strand nodes.
Either geometric or hyperbolic tangent node distributions are used. In this work we propose a method
of determining the strand length based on boundary layer thickness estimates from laminar or turbulent
boundary layer theory18 in order to extend the strands far enough to fully capture boundary effects. Flat
plate estimates for incompressible flow with zero pressure gradient yield the following expressions for laminar
and turbulent boundary layer thickness as a function of distance x along the plate:

δ(x)lam ≈ 5.0xRe
− 1

2
x , δ(x)turb ≈ 0.37xRe

− 1
5

x . (1)

The strand length, l, is then expressed as a multiple, K, of the boundary layer thickness at some characteristic
length of the problem, L, as

l = Kδ(L). (2)

The characteristic length, L, may vary for different components or bodies, such as a wing and fuselage.
Lastly, the clipping index is computed for each strand, which marks the last node to be solved by the strand
solver. The nodes beyond the clipping index are provided by interpolation from surrounding grids, which
may be Cartesian or strand. Clipping is necessary for sharp concave corners in which self-intersections may
occur.

Careful computation of strand pointing vectors is necessary to minimize excessive clipping close to solid
bodies as well as to generally increase grid smoothness. Pointing vectors at each node are initialized as the
average of the normal vectors of each face which touches the node. This averaging procedure minimizes
the deviations of the pointing vector from the surrounding face normal vectors, which increases its visibility
with respect to the surrounding faces.5 However, for sharp convex or concave corners, this procedure alone
leads to large gaps and overlaps in the resulting strand grid. To produce a more uniform strand grid, we
propose an iterative strand vector smoothing procedure. The smoothing procedure is derived from a local
optimization problem at each node, where a minimum of

f(n0) =
∑

i

(1− n0 · ni), i = 1, . . . , N (3)

is sought, where N is the number of nearest node neighbors to node 0. The minimization at each node
proceeds subject to a unit-length constraint,

g1(n0) = |n0|2 − 1. (4)

At planes of symmetry or inflow/outflow planes, we constrain the pointing vectors to lie within the plane of
unit normal nP by adding the following constraint:

g2(n0) = n0 · nP . (5)
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at the wing-body junction. Despite these discrepancies in the locally clipped region, the solution at other
stations appears largely unaffected.

Figure 10. Hybrid mesh for the DLR-F6 FX2B wing-body-fairing configuration.

Figure 11. Mesh and density contours at wing body junction for the DLR-F6 FX2B case.

Table 5. Summary of DLR-F6 FX2B wing-body-fairing configuration. Stand-alone, hybrid unstructured, and
hybrid strand results presented.

configuration half/full-span near-body pts. off-body pts. CL CD

stand-alone full 11.0e6 0 0.558 0.0282
hybrid-unstructured full 10.0e6 5.0e6 0.557 0.0282

hybrid-strand half 6.3e6 21.5e6 0.559 0.0271

V. Conclusions and Future Work

We investigate an approach for high Reynolds number viscous CFD using an automatic strand-Cartesian
grid generation scheme. The strand grid generation procedure is fully automatic given an adequate surface
grid. Since strand grids are straight line extrusions of the surface grid, they may be stored entirely on each
processor in a parallel framework, leading to increased scalability in the domain connectivity algorithms.
The semi-structured nature of strand grids is favorable to computations on high-aspect ratio grids used for
high Reynolds number flows.

The strand grid generation process depends on some basic parameters, the effects of which were studied
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Domain Connectivity
• Parallel Unsteady Domain Information Technology (PUNDIT) 

(Sitaraman 2010)
– explicit or implicit hole-cutting
– intergrid boundary points

– linear interpolation

extends a short distance from the body. This grid can be a curvilinear grid or an unstructured tetrahedral
or prismatic grid, extracted from a standard unstructured volume grid or generated directly from a surface
triangulation using prisms with hyperbolic marching.24 Either will work equally well in the infrastructure.
The reason for using curvilinear or unstructured grids in the near-body region is to properly capture the
geometry and viscous boundary layer effects, which are difficult to impossible to capture with cartesian grids
alone. A short distance from the body, the solution is interpolated to a structured cartesian background
mesh using standard overset hole-cutting and interpolation techniques.

Once the near-body grid is supplied to the infrastructure, all adaptive off-body gridding is performed
automatically. The outer boundary points of the near-body grids will receive data from the background
cartesian grids. These interpolation points are referred to as inter-grid boundary points (IGBP). They do
not compute a solution, they simply receive data interpolated directly from the overlapping background
grids. The locations (x, y, z coordinates) and resolution ∆s (generally, the minimum distance to neighboring
grid points) of the near-body IGBPs are used to guide construction of the off-body grid system.

Figure 2. Adaptive cartesian off-body grid generation. The resolution of near-body IGBPs are used to drive refinement
of cartesian grids. For the purposes of illustration, all figures use dual-fringes (i.e., two interpolation points). In practice,
between one and three fringes are used, depending on the order of accuracy in the solver.

The off-body grid system uses a block-structured AMR (SAMR) grid. Levels are constructed from
coarsest to finest. The coarsest level defines the physical extent of the computational domain. Each finer
level is formed by selecting cells on the coarser level and then clustering the marked cells together to form
the regions that will constitute the new finer level. Using the list of near-body IGBPs, identify all cartesian
cells on a particular level that contain at least one IGBP. Then assess each of those cells to see whether
the cartesian grid spacing ∆x is greater than the resolution ∆s of the near-body IGBP it contains. Those
cartesian cells that do not have appropriate resolution (i.e., ∆x > ∆s) are marked for refinement and the
next level is constructed. This process continues until no more cells are marked i.e., the resolution of all
near-body IGBPs has been satisfied by the off-body cartesian grid system. At that point the overlap region
is cut away from the cartesian grid and the off-body IGBPs are identified at the hole boundaries. Figure 2
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Strand Length Study

• Shorter strands are preferred
– transition sooner to more 

accurate Cartesian grids
– enhanced wake resolution

(a) NSU3D stand-alone mesh (b) NSU3D stand-alone vorticity contours

(c) hybrid mesh, K = 2.0 (d) hybrid vorticity contours

Figure 3. Comparison of mesh and vorticity contours for a cylinder in cross flow at Re = 100 for hybrid and
stand-alone cases.

Cartesian configuration with a strand length of 1.25 square side lengths, which corresponds to K = 4.0, with
L equal to one side length in Equation 2 The perimeter of the square contains 240 points, with 10 points
along the span, which extends one square side length. The near-body mesh contains 2.1x105 points, and the
off-body mesh contains 2.7x105 points.

We run the case with variable amounts of strand vector smoothing, using the smoothing residual of
Equation 8 as a stopping criterion for the iterative smoothing procedure. Once the smoothing residual
reaches the specified value, smoothing is terminated. The levels of smoothing residual tested are shown in
Table 2, along with the number of smoothing iterations to reach the specified residual and the Strouhal
number obtained from the computation on each strand grid. The first case shown, with rs,RMS = 10−2,
meets the stopping criterion with the initial pointing vectors based on surrounding face normals such that
no smoothing is performed. As rs,RMS is lowered, the required number of smoothing iterations increases
as shown. The meshes and vorticity contours of four of the cases in the table are displayed in Figure 4. It
is apparent from the vorticity contours that the shedding dynamics are better captured when the pointing
vectors remain more orthogonal to the surface. This trend is further discussed below.

The computed Strouhal numbers in Table 2 and the vorticity contours in Figure 4 show a degradation
in the computed shedding behavior with increasing amounts of strand vector smoothing. Despite the ex-
tremely poor grid quality at the square corners for the case with no smoothing, good agreement with the
experimental Strouhal number and shedding behavior is observed. The computed Strouhal number that
most closely agrees with experiment is observed at around rs,RMS = 10−4 or 10−5, corresponding to 7-15
smoothing iterations. As the smoothing increases, the shedding behavior becomes erratic until no distiguish-
able periodicity is observed. Table 2 also indicates increasing error in the Strouhal number with increasing
amounts of smoothing. Figure 5 shows the lift histories for the cases with little smoothing (rs,RMS = 10−4)
and more smoothing (rs,RMS = 10−7), further indicating the breakdown of the expected regular shedding
pattern. Figure 6 shows density contours for the same two cases, indicating a significant loss of detail on the
downstream side of the square cylinder.

The results of the square cylinder case suggest that orthogonality of strand grids with respect to the
surface is critical for accuracy, especially in regions of high gradients or separation. The optimal amount of
smoothing appears to be at around rs,RMS = 10−4, which is used for all the remaining tests in this study.
This level of smoothing generally provides adequate coverage around sharp corners, while reducing skewness
to a degree tolerable by the solver.

IV. Computational Results

Using the insight gained from the square and circular cylinder cases, we now demonstrate the strand-
adaptive Cartesian approach for three more complex geometries. The cases include an NACA 0015 wing,
Isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. These cases demonstrate that
strand grids are capable of producing accurate results compared with established methods and experiment.
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We run the case with variable amounts of strand vector smoothing, using the smoothing residual of
Equation 8 as a stopping criterion for the iterative smoothing procedure. Once the smoothing residual
reaches the specified value, smoothing is terminated. The levels of smoothing residual tested are shown in
Table 2, along with the number of smoothing iterations to reach the specified residual and the Strouhal
number obtained from the computation on each strand grid. The first case shown, with rs,RMS = 10−2,
meets the stopping criterion with the initial pointing vectors based on surrounding face normals such that
no smoothing is performed. As rs,RMS is lowered, the required number of smoothing iterations increases
as shown. The meshes and vorticity contours of four of the cases in the table are displayed in Figure 4. It
is apparent from the vorticity contours that the shedding dynamics are better captured when the pointing
vectors remain more orthogonal to the surface. This trend is further discussed below.

The computed Strouhal numbers in Table 2 and the vorticity contours in Figure 4 show a degradation
in the computed shedding behavior with increasing amounts of strand vector smoothing. Despite the ex-
tremely poor grid quality at the square corners for the case with no smoothing, good agreement with the
experimental Strouhal number and shedding behavior is observed. The computed Strouhal number that
most closely agrees with experiment is observed at around rs,RMS = 10−4 or 10−5, corresponding to 7-15
smoothing iterations. As the smoothing increases, the shedding behavior becomes erratic until no distiguish-
able periodicity is observed. Table 2 also indicates increasing error in the Strouhal number with increasing
amounts of smoothing. Figure 5 shows the lift histories for the cases with little smoothing (rs,RMS = 10−4)
and more smoothing (rs,RMS = 10−7), further indicating the breakdown of the expected regular shedding
pattern. Figure 6 shows density contours for the same two cases, indicating a significant loss of detail on the
downstream side of the square cylinder.

The results of the square cylinder case suggest that orthogonality of strand grids with respect to the
surface is critical for accuracy, especially in regions of high gradients or separation. The optimal amount of
smoothing appears to be at around rs,RMS = 10−4, which is used for all the remaining tests in this study.
This level of smoothing generally provides adequate coverage around sharp corners, while reducing skewness
to a degree tolerable by the solver.

IV. Computational Results

Using the insight gained from the square and circular cylinder cases, we now demonstrate the strand-
adaptive Cartesian approach for three more complex geometries. The cases include an NACA 0015 wing,
Isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. These cases demonstrate that
strand grids are capable of producing accurate results compared with established methods and experiment.
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Figure 2. Comparison of computed and experimental data for a range low Reynolds numbers. Hybrid meshes
with K = 2.0 were used for the strand-Cartesian configuration. Strand-grids with K = 64 were used for the
stand-alone configuration.

accurate scheme. For the hybrid case, we intentionally place the intergrid region quite close to the cylinder
to observe any effects of transitioning to the Cartesian grids in a highly viscous region. In each case, we
place 640 points around the cylinder circumfrentially, with 10 points across the cylinder span, which has a
length of one cylinder diameter.

The results of the circular cylinder case are shown in Figure 2. Both configurations resolve the shedding
frequency reasonably well. Table 1 shows the comparison for the M = 0.1, Re = 100 case and shows that
the stand-alone case approaches closer to the experimental Strouhal number of 0.164.22,23 The most notable
difference between the stand-alone and hybrid strand-Cartesian cases is the resolution of the shed vortices
downstream of the cylinder, as shown in Figure 3. The hybrid case with the 5th order accurate off-body
scheme clearly resolves the vortices better than the purely second order accurate stand-alone case.

The results of this case suggest that small values of the parameter K may be used without adversely
affecting the solution as features transition to the off-body region. In fact, the dramatically improved off-body
resolution obtained with the Cartesian grids would suggest that smaller values of K are optimal. However, for
high Reynolds number turbulent cases, K must generally be quite large to avoid large numbers of Cartesian
points in the off-body region. Generally, K should be chosen as small as possible while maintaining an
affordable number of Cartesian points. Typical turbulent calculations have been run with 10 < K < 20 with
good results.

Next, we examine the effects of variable amounts of smoothing for the strand pointing vectors on solution
quality. We examine flow over a square cylinder at Re = 250 based on one square side length and M = 0.1,
which has a regular shedding pattern at a Strouhal number of St = 0.142.24 The flow regions near the
leading sharp corners of the square cylinder are critical regions of the flow since they induce the separation
which governs the shedding behavior.25 Consequently, this test should provide insight into any sensitivity of
the flow solution to strand vector bending. We compute flow over the square cylinder using a hybrid strand-

Table 1. Configurations and computed Strouhal numbers for a circular cylinder in cross flow at Re = 100.
Experimental Strouhal number for this case is St = 0.164.

case K strand length pts. per strand near-body pts. off-body pts. computed St

stand-alone 64 40D 103 6.6e5 0 0.170
hybrid med. 2 1.25D 66 4.2e5 7.2e5 0.178
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Strand Bending Study (1)

(a) rs,RMS = 10−2 (no
bending)

(b) vorticity contours, rs,RMS = 10−2 (no bending)

(c) rs,RMS = 10−4 (d) vorticity contours, rs,RMS = 10−4

(e) rs,RMS = 5x10−6 (f) vorticity contours, rs,RMS = 5x10−6

(g) rs,RMS = 10−7 (h) vorticity contours, rs,RMS = 10−7

Figure 4. Mesh and vorticity contours for a square cylinder in cross flow at Re = 250 for varying amounts of
strand direction smoothing.

For all cases, the strand vector smoothing is terminated at a value of rs,RMS = 10−4, resulting in 5-10
smoothing iterations. The strand length parameter ranges between K = 10 and K = 20. The results of each
case are described in detail.

A. NACA 0015 Wing

We first demonstrate the strand-Cartesian method on an NACA 0015 wing at M = 0.1235, angle of attack
α = 12o, and Re = 1.5x106. Experimental data for this case is reported by McAlister and Takahashi.26
Several mesh configurations are generated for comparison, as shown in Table 3 and Figure 7, including
NSU3D stand-alone, hybrid-unstructured, and hybrid-strand with and without solution adaptivity in the
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NSU3D stand-alone, hybrid-unstructured, and hybrid-strand with and without solution adaptivity in the
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Strand Bending Study (2)

• Shedding pattern degrades with 
excessive smoothing

• Optimal amount:
– generally maintains orthogonality

– provides adequate coverage for 
sharp corners

(a) 7 smoothing iterations (rs,RMS = 10−4) (b) 208 smoothing iterations (rs,RMS = 10−7)

Figure 5. lift histories of the square cylinder for two levels of strand direction bending.

(a) 7 smoothing iterations (rs,RMS = 10−4) (b) 208 smoothing iterations (rs,RMS = 10−7)

Figure 6. Density contours near the surface of the square cylinder for two levels of strand direction bending.

Table 2. Summary of strand bending study for square cylinder in cross flow at Re = 250.

rs,RMS number of smoothing iter. St

exp. - .142
10−2 0 .139
10−3 1 .140
10−4 7 .141
10−5 15 .143

5x10−6 32 .157
10−6 65 .163
10−7 208 chaotic
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Several mesh configurations are generated for comparison, as shown in Table 3 and Figure 7, including
NSU3D stand-alone, hybrid-unstructured, and hybrid-strand with and without solution adaptivity in the

8 of 18

American Institute of Aeronautics and Astronautics

(a) rs,RMS = 10−2 (no
bending)

(b) vorticity contours, rs,RMS = 10−2 (no bending)

(c) rs,RMS = 10−4 (d) vorticity contours, rs,RMS = 10−4

(e) rs,RMS = 5x10−6 (f) vorticity contours, rs,RMS = 5x10−6

(g) rs,RMS = 10−7 (h) vorticity contours, rs,RMS = 10−7

Figure 4. Mesh and vorticity contours for a square cylinder in cross flow at Re = 250 for varying amounts of
strand direction smoothing.

For all cases, the strand vector smoothing is terminated at a value of rs,RMS = 10−4, resulting in 5-10
smoothing iterations. The strand length parameter ranges between K = 10 and K = 20. The results of each
case are described in detail.

A. NACA 0015 Wing

We first demonstrate the strand-Cartesian method on an NACA 0015 wing at M = 0.1235, angle of attack
α = 12o, and Re = 1.5x106. Experimental data for this case is reported by McAlister and Takahashi.26
Several mesh configurations are generated for comparison, as shown in Table 3 and Figure 7, including
NSU3D stand-alone, hybrid-unstructured, and hybrid-strand with and without solution adaptivity in the
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NACA 0015 Wing
off-body region. All configurations use the same surface mesh. The stand-alone mesh contains 4.8 million
points using a mixed prismatic-tetrahedral mesh. The same mesh is used for the hybrid-unstructured case
in the near-body, but is trimmed a short distance from the wing surface to interface with a Cartesian
mesh system of 2.1 million points. The hybrid-strand cases use a strand grid with 7.5 million points with
a length parameter of K = 10, corresponding to a strand length of around 1/5 of the wing chord. As
seen in Figure 7, the strand mesh is constructed significantly smaller than the unstructured mesh used in
the hybrid-unstructured case in order to transition sooner to the more accurate Cartesian mesh system.
Consequently, an extra level of Cartesian refinement is needed for the strand cases in order to match the
spacing at the clipping indices. The hybrid-strand case with no solution adaptation contains 13.1 million
off-body points, while the solution-adaptive case contains 55 million off-body points. In all hybrid cases, the
5th order accurate scheme is used in the off-body.

Table 3. Summary of NACA 0015 wing mesh configurations. Stand-alone, hybrid unstructured, and hybrid
strand results presented.

configuration near-body pts. off-body pts. CL CD

stand-alone 4.8e6 0 0.913 0.0576
hybrid-unstructured 4.5e6 2.1e6 0.919 0.0562

hybrid-strand 7.5e6 13.1e6 0.915 0.0564
hybrid-strand, adapted 7.5e6 55.0e6 0.916 0.0562

As shown in Table 3, all mesh configurations produce comparable lift and drag coefficients. However,
major differences are observed in terms of the resolution of the trailing vortices. Figure 7 shows iso-surfaces
of vorticity, colored with velocity magnitude. The figure shows that the NSU3D stand-alone case quickly
dissipates the trailing vortices. When the high-order Cartesian grids are added, the vortex resolution increases
dramatically, especially for the solution adaptive case, which was set to refine to vorticity. While the vortex
resolution appears to be a function of off-body resolution and not the strand grids themselves, the results
indicate the success of the overall approach to resolve both near-body and off-body flow field features.

B. Isolated V-22 (TRAM) Rotor in Hover

The next set of results are for the Tilt Rotor Aeromechanics Model (TRAM), which is a quarter-scale model
of the Bell/Boeing V-22 Osprey tiltrotor isolated rotor. Results for this case have been obtained previously
by Potsdam and Strawn27 and Wissink et al.13 Here, we apply the strand-adaptive Cartesian approach to
the same configuration. Nominal operating conditions for the scale model include a tip Mach number of
0.625 and a tip Reynolds number of 2.1x106. We examine results for the θ = 14o collective condition in
steady, non-inertial hover.

We obtain results using both coarse and fine surface meshes, with and without off-body solution adap-
tivity. The specific configurations with the near-body and off-body grid sizes are shown in Table 4. The
strand length parameter is set to K = 20, resulting in a strand length of 40% of the tip chord length. The
smoothing residual limit is set to rs,RMS = 10−4. For all configurations, eight levels of Cartesian refinement
are used, with the finest level spacing equal to 5% of the tip chord length. For the first two cases listed in
Table 4 solution adaptivity is not applied. For the third case, the off-body grid is adapted to vorticity.

The results of the three configurations are shown in Table 4 and Figures 8 and 9. Table 4 indicates

Table 4. Summary of TRAM results at θ = 14o. Percent error from experimental values shown. Experimental
values are CT = 0.0149, CQ = 0.00165, and FM = 0.779.

surface mesh adapt near-body pts. off-body pts. CT CQ FM

coarse no 1.99e6 3.90e6 0.0141 (-5.4%) 0.00174 (5.5%) 0.683 (-12.3%)
fine no 9.08e6 3.98e6 0.0145 (-2.7%) 0.00171 (3.6%) 0.717 (-8.0%)
fine yes 9.08e6 102.5e6 0.0150 ( 0.7%) 0.00170 (3.0%) 0.760 (-2.4%)
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• Flow conditions:
– Mach = 0.1235
– angle of attack = 12 deg.

– Reynolds number = 1.5 million

• Strand Grid Parameters:
– strand length = 1/5 chord,

– strand smoothing,

off-body region. All configurations use the same surface mesh. The stand-alone mesh contains 4.8 million
points using a mixed prismatic-tetrahedral mesh. The same mesh is used for the hybrid-unstructured case
in the near-body, but is trimmed a short distance from the wing surface to interface with a Cartesian
mesh system of 2.1 million points. The hybrid-strand cases use a strand grid with 7.5 million points with
a length parameter of K = 10, corresponding to a strand length of around 1/5 of the wing chord. As
seen in Figure 7, the strand mesh is constructed significantly smaller than the unstructured mesh used in
the hybrid-unstructured case in order to transition sooner to the more accurate Cartesian mesh system.
Consequently, an extra level of Cartesian refinement is needed for the strand cases in order to match the
spacing at the clipping indices. The hybrid-strand case with no solution adaptation contains 13.1 million
off-body points, while the solution-adaptive case contains 55 million off-body points. In all hybrid cases, the
5th order accurate scheme is used in the off-body.

Table 3. Summary of NACA 0015 wing mesh configurations. Stand-alone, hybrid unstructured, and hybrid
strand results presented.

configuration near-body pts. off-body pts. CL CD

stand-alone 4.8e6 0 0.913 0.0576
hybrid-unstructured 4.5e6 2.1e6 0.919 0.0562

hybrid-strand 7.5e6 13.1e6 0.915 0.0564
hybrid-strand, adapted 7.5e6 55.0e6 0.916 0.0562

As shown in Table 3, all mesh configurations produce comparable lift and drag coefficients. However,
major differences are observed in terms of the resolution of the trailing vortices. Figure 7 shows iso-surfaces
of vorticity, colored with velocity magnitude. The figure shows that the NSU3D stand-alone case quickly
dissipates the trailing vortices. When the high-order Cartesian grids are added, the vortex resolution increases
dramatically, especially for the solution adaptive case, which was set to refine to vorticity. While the vortex
resolution appears to be a function of off-body resolution and not the strand grids themselves, the results
indicate the success of the overall approach to resolve both near-body and off-body flow field features.

B. Isolated V-22 (TRAM) Rotor in Hover

The next set of results are for the Tilt Rotor Aeromechanics Model (TRAM), which is a quarter-scale model
of the Bell/Boeing V-22 Osprey tiltrotor isolated rotor. Results for this case have been obtained previously
by Potsdam and Strawn27 and Wissink et al.13 Here, we apply the strand-adaptive Cartesian approach to
the same configuration. Nominal operating conditions for the scale model include a tip Mach number of
0.625 and a tip Reynolds number of 2.1x106. We examine results for the θ = 14o collective condition in
steady, non-inertial hover.

We obtain results using both coarse and fine surface meshes, with and without off-body solution adap-
tivity. The specific configurations with the near-body and off-body grid sizes are shown in Table 4. The
strand length parameter is set to K = 20, resulting in a strand length of 40% of the tip chord length. The
smoothing residual limit is set to rs,RMS = 10−4. For all configurations, eight levels of Cartesian refinement
are used, with the finest level spacing equal to 5% of the tip chord length. For the first two cases listed in
Table 4 solution adaptivity is not applied. For the third case, the off-body grid is adapted to vorticity.

The results of the three configurations are shown in Table 4 and Figures 8 and 9. Table 4 indicates

Table 4. Summary of TRAM results at θ = 14o. Percent error from experimental values shown. Experimental
values are CT = 0.0149, CQ = 0.00165, and FM = 0.779.

surface mesh adapt near-body pts. off-body pts. CT CQ FM

coarse no 1.99e6 3.90e6 0.0141 (-5.4%) 0.00174 (5.5%) 0.683 (-12.3%)
fine no 9.08e6 3.98e6 0.0145 (-2.7%) 0.00171 (3.6%) 0.717 (-8.0%)
fine yes 9.08e6 102.5e6 0.0150 ( 0.7%) 0.00170 (3.0%) 0.760 (-2.4%)
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off-body region. All configurations use the same surface mesh. The stand-alone mesh contains 4.8 million
points using a mixed prismatic-tetrahedral mesh. The same mesh is used for the hybrid-unstructured case
in the near-body, but is trimmed a short distance from the wing surface to interface with a Cartesian
mesh system of 2.1 million points. The hybrid-strand cases use a strand grid with 7.5 million points with
a length parameter of K = 10, corresponding to a strand length of around 1/5 of the wing chord. As
seen in Figure 7, the strand mesh is constructed significantly smaller than the unstructured mesh used in
the hybrid-unstructured case in order to transition sooner to the more accurate Cartesian mesh system.
Consequently, an extra level of Cartesian refinement is needed for the strand cases in order to match the
spacing at the clipping indices. The hybrid-strand case with no solution adaptation contains 13.1 million
off-body points, while the solution-adaptive case contains 55 million off-body points. In all hybrid cases, the
5th order accurate scheme is used in the off-body.

Table 3. Summary of NACA 0015 wing mesh configurations. Stand-alone, hybrid unstructured, and hybrid
strand results presented.

configuration near-body pts. off-body pts. CL CD

stand-alone 4.8e6 0 0.913 0.0576
hybrid-unstructured 4.5e6 2.1e6 0.919 0.0562

hybrid-strand 7.5e6 13.1e6 0.915 0.0564
hybrid-strand, adapted 7.5e6 55.0e6 0.916 0.0562

As shown in Table 3, all mesh configurations produce comparable lift and drag coefficients. However,
major differences are observed in terms of the resolution of the trailing vortices. Figure 7 shows iso-surfaces
of vorticity, colored with velocity magnitude. The figure shows that the NSU3D stand-alone case quickly
dissipates the trailing vortices. When the high-order Cartesian grids are added, the vortex resolution increases
dramatically, especially for the solution adaptive case, which was set to refine to vorticity. While the vortex
resolution appears to be a function of off-body resolution and not the strand grids themselves, the results
indicate the success of the overall approach to resolve both near-body and off-body flow field features.

B. Isolated V-22 (TRAM) Rotor in Hover

The next set of results are for the Tilt Rotor Aeromechanics Model (TRAM), which is a quarter-scale model
of the Bell/Boeing V-22 Osprey tiltrotor isolated rotor. Results for this case have been obtained previously
by Potsdam and Strawn27 and Wissink et al.13 Here, we apply the strand-adaptive Cartesian approach to
the same configuration. Nominal operating conditions for the scale model include a tip Mach number of
0.625 and a tip Reynolds number of 2.1x106. We examine results for the θ = 14o collective condition in
steady, non-inertial hover.

We obtain results using both coarse and fine surface meshes, with and without off-body solution adap-
tivity. The specific configurations with the near-body and off-body grid sizes are shown in Table 4. The
strand length parameter is set to K = 20, resulting in a strand length of 40% of the tip chord length. The
smoothing residual limit is set to rs,RMS = 10−4. For all configurations, eight levels of Cartesian refinement
are used, with the finest level spacing equal to 5% of the tip chord length. For the first two cases listed in
Table 4 solution adaptivity is not applied. For the third case, the off-body grid is adapted to vorticity.

The results of the three configurations are shown in Table 4 and Figures 8 and 9. Table 4 indicates

Table 4. Summary of TRAM results at θ = 14o. Percent error from experimental values shown. Experimental
values are CT = 0.0149, CQ = 0.00165, and FM = 0.779.

surface mesh adapt near-body pts. off-body pts. CT CQ FM

coarse no 1.99e6 3.90e6 0.0141 (-5.4%) 0.00174 (5.5%) 0.683 (-12.3%)
fine no 9.08e6 3.98e6 0.0145 (-2.7%) 0.00171 (3.6%) 0.717 (-8.0%)
fine yes 9.08e6 102.5e6 0.0150 ( 0.7%) 0.00170 (3.0%) 0.760 (-2.4%)
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(a) mesh, stand-alone (b) vorticity, stand-alone

(c) mesh, hybrid-unstructured (d) vorticity, hybrid-unstructured

(e) mesh, hybrid-strand (f) vorticity, hybrid-strand

(g) mesh, hybrid-strand, adapted (h) vorticity, hybrid-strand, adapted

Figure 7. Comparison of NACA 0015 wing-tip vortex resolution for various mesh configurations.

a marked improvement in thrust coefficient (CT ), torque coefficient (CQ) and figure of merit (FM =
C3/2

T /CQ

√
2) compared to experiment with refinement of the surface mesh and off-body adaptivity. The

FM with the fine surface mesh and off-body adaptivity differs from the experimental value by only 2.4%.
Iso-surfaces of vorticity colored by velocity magnitude are shown in Figure 8. Minor differences in trailing
vortex resolution may be seen in the cases without off-body adaptivity, with a dramatic increase in resolution
observed with adaptivity turned on. With adaptivity, very little dissipation of the vortex is observed for
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11 of 18

American Institute of Aeronautics and Astronautics

(a) mesh, stand-alone (b) vorticity, stand-alone

(c) mesh, hybrid-unstructured (d) vorticity, hybrid-unstructured

(e) mesh, hybrid-strand (f) vorticity, hybrid-strand

(g) mesh, hybrid-strand, adapted (h) vorticity, hybrid-strand, adapted

Figure 7. Comparison of NACA 0015 wing-tip vortex resolution for various mesh configurations.

a marked improvement in thrust coefficient (CT ), torque coefficient (CQ) and figure of merit (FM =
C3/2

T /CQ

√
2) compared to experiment with refinement of the surface mesh and off-body adaptivity. The

FM with the fine surface mesh and off-body adaptivity differs from the experimental value by only 2.4%.
Iso-surfaces of vorticity colored by velocity magnitude are shown in Figure 8. Minor differences in trailing
vortex resolution may be seen in the cases without off-body adaptivity, with a dramatic increase in resolution
observed with adaptivity turned on. With adaptivity, very little dissipation of the vortex is observed for

11 of 18

American Institute of Aeronautics and Astronautics

13



TRAM Inertial Hover (1)

• Tilt Rotor Aeromechanics Model 
(TRAM)
– 1/4-scale model of Bell/Boeing 

V-22 Osprey isolated rotor
– tip Mach number = 0.625

– collective pitch = 14 deg.

– tip Re = 2.1 million

• Strand grid/Cartesian parameters
– strand length = 40% of tip 

chord, 

– smoothing residual,
– 8 Cartesian levels (finest is 5% of 

tip chord)

off-body region. All configurations use the same surface mesh. The stand-alone mesh contains 4.8 million
points using a mixed prismatic-tetrahedral mesh. The same mesh is used for the hybrid-unstructured case
in the near-body, but is trimmed a short distance from the wing surface to interface with a Cartesian
mesh system of 2.1 million points. The hybrid-strand cases use a strand grid with 7.5 million points with
a length parameter of K = 10, corresponding to a strand length of around 1/5 of the wing chord. As
seen in Figure 7, the strand mesh is constructed significantly smaller than the unstructured mesh used in
the hybrid-unstructured case in order to transition sooner to the more accurate Cartesian mesh system.
Consequently, an extra level of Cartesian refinement is needed for the strand cases in order to match the
spacing at the clipping indices. The hybrid-strand case with no solution adaptation contains 13.1 million
off-body points, while the solution-adaptive case contains 55 million off-body points. In all hybrid cases, the
5th order accurate scheme is used in the off-body.

Table 3. Summary of NACA 0015 wing mesh configurations. Stand-alone, hybrid unstructured, and hybrid
strand results presented.

configuration near-body pts. off-body pts. CL CD

stand-alone 4.8e6 0 0.913 0.0576
hybrid-unstructured 4.5e6 2.1e6 0.919 0.0562

hybrid-strand 7.5e6 13.1e6 0.915 0.0564
hybrid-strand, adapted 7.5e6 55.0e6 0.916 0.0562

As shown in Table 3, all mesh configurations produce comparable lift and drag coefficients. However,
major differences are observed in terms of the resolution of the trailing vortices. Figure 7 shows iso-surfaces
of vorticity, colored with velocity magnitude. The figure shows that the NSU3D stand-alone case quickly
dissipates the trailing vortices. When the high-order Cartesian grids are added, the vortex resolution increases
dramatically, especially for the solution adaptive case, which was set to refine to vorticity. While the vortex
resolution appears to be a function of off-body resolution and not the strand grids themselves, the results
indicate the success of the overall approach to resolve both near-body and off-body flow field features.

B. Isolated V-22 (TRAM) Rotor in Hover

The next set of results are for the Tilt Rotor Aeromechanics Model (TRAM), which is a quarter-scale model
of the Bell/Boeing V-22 Osprey tiltrotor isolated rotor. Results for this case have been obtained previously
by Potsdam and Strawn27 and Wissink et al.13 Here, we apply the strand-adaptive Cartesian approach to
the same configuration. Nominal operating conditions for the scale model include a tip Mach number of
0.625 and a tip Reynolds number of 2.1x106. We examine results for the θ = 14o collective condition in
steady, non-inertial hover.

We obtain results using both coarse and fine surface meshes, with and without off-body solution adap-
tivity. The specific configurations with the near-body and off-body grid sizes are shown in Table 4. The
strand length parameter is set to K = 20, resulting in a strand length of 40% of the tip chord length. The
smoothing residual limit is set to rs,RMS = 10−4. For all configurations, eight levels of Cartesian refinement
are used, with the finest level spacing equal to 5% of the tip chord length. For the first two cases listed in
Table 4 solution adaptivity is not applied. For the third case, the off-body grid is adapted to vorticity.

The results of the three configurations are shown in Table 4 and Figures 8 and 9. Table 4 indicates

Table 4. Summary of TRAM results at θ = 14o. Percent error from experimental values shown. Experimental
values are CT = 0.0149, CQ = 0.00165, and FM = 0.779.

surface mesh adapt near-body pts. off-body pts. CT CQ FM

coarse no 1.99e6 3.90e6 0.0141 (-5.4%) 0.00174 (5.5%) 0.683 (-12.3%)
fine no 9.08e6 3.98e6 0.0145 (-2.7%) 0.00171 (3.6%) 0.717 (-8.0%)
fine yes 9.08e6 102.5e6 0.0150 ( 0.7%) 0.00170 (3.0%) 0.760 (-2.4%)
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off-body region. All configurations use the same surface mesh. The stand-alone mesh contains 4.8 million
points using a mixed prismatic-tetrahedral mesh. The same mesh is used for the hybrid-unstructured case
in the near-body, but is trimmed a short distance from the wing surface to interface with a Cartesian
mesh system of 2.1 million points. The hybrid-strand cases use a strand grid with 7.5 million points with
a length parameter of K = 10, corresponding to a strand length of around 1/5 of the wing chord. As
seen in Figure 7, the strand mesh is constructed significantly smaller than the unstructured mesh used in
the hybrid-unstructured case in order to transition sooner to the more accurate Cartesian mesh system.
Consequently, an extra level of Cartesian refinement is needed for the strand cases in order to match the
spacing at the clipping indices. The hybrid-strand case with no solution adaptation contains 13.1 million
off-body points, while the solution-adaptive case contains 55 million off-body points. In all hybrid cases, the
5th order accurate scheme is used in the off-body.

Table 3. Summary of NACA 0015 wing mesh configurations. Stand-alone, hybrid unstructured, and hybrid
strand results presented.

configuration near-body pts. off-body pts. CL CD

stand-alone 4.8e6 0 0.913 0.0576
hybrid-unstructured 4.5e6 2.1e6 0.919 0.0562

hybrid-strand 7.5e6 13.1e6 0.915 0.0564
hybrid-strand, adapted 7.5e6 55.0e6 0.916 0.0562

As shown in Table 3, all mesh configurations produce comparable lift and drag coefficients. However,
major differences are observed in terms of the resolution of the trailing vortices. Figure 7 shows iso-surfaces
of vorticity, colored with velocity magnitude. The figure shows that the NSU3D stand-alone case quickly
dissipates the trailing vortices. When the high-order Cartesian grids are added, the vortex resolution increases
dramatically, especially for the solution adaptive case, which was set to refine to vorticity. While the vortex
resolution appears to be a function of off-body resolution and not the strand grids themselves, the results
indicate the success of the overall approach to resolve both near-body and off-body flow field features.

B. Isolated V-22 (TRAM) Rotor in Hover

The next set of results are for the Tilt Rotor Aeromechanics Model (TRAM), which is a quarter-scale model
of the Bell/Boeing V-22 Osprey tiltrotor isolated rotor. Results for this case have been obtained previously
by Potsdam and Strawn27 and Wissink et al.13 Here, we apply the strand-adaptive Cartesian approach to
the same configuration. Nominal operating conditions for the scale model include a tip Mach number of
0.625 and a tip Reynolds number of 2.1x106. We examine results for the θ = 14o collective condition in
steady, non-inertial hover.

We obtain results using both coarse and fine surface meshes, with and without off-body solution adap-
tivity. The specific configurations with the near-body and off-body grid sizes are shown in Table 4. The
strand length parameter is set to K = 20, resulting in a strand length of 40% of the tip chord length. The
smoothing residual limit is set to rs,RMS = 10−4. For all configurations, eight levels of Cartesian refinement
are used, with the finest level spacing equal to 5% of the tip chord length. For the first two cases listed in
Table 4 solution adaptivity is not applied. For the third case, the off-body grid is adapted to vorticity.

The results of the three configurations are shown in Table 4 and Figures 8 and 9. Table 4 indicates

Table 4. Summary of TRAM results at θ = 14o. Percent error from experimental values shown. Experimental
values are CT = 0.0149, CQ = 0.00165, and FM = 0.779.

surface mesh adapt near-body pts. off-body pts. CT CQ FM

coarse no 1.99e6 3.90e6 0.0141 (-5.4%) 0.00174 (5.5%) 0.683 (-12.3%)
fine no 9.08e6 3.98e6 0.0145 (-2.7%) 0.00171 (3.6%) 0.717 (-8.0%)
fine yes 9.08e6 102.5e6 0.0150 ( 0.7%) 0.00170 (3.0%) 0.760 (-2.4%)
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TRAM Inertial Hover (2)

off-body region. All configurations use the same surface mesh. The stand-alone mesh contains 4.8 million
points using a mixed prismatic-tetrahedral mesh. The same mesh is used for the hybrid-unstructured case
in the near-body, but is trimmed a short distance from the wing surface to interface with a Cartesian
mesh system of 2.1 million points. The hybrid-strand cases use a strand grid with 7.5 million points with
a length parameter of K = 10, corresponding to a strand length of around 1/5 of the wing chord. As
seen in Figure 7, the strand mesh is constructed significantly smaller than the unstructured mesh used in
the hybrid-unstructured case in order to transition sooner to the more accurate Cartesian mesh system.
Consequently, an extra level of Cartesian refinement is needed for the strand cases in order to match the
spacing at the clipping indices. The hybrid-strand case with no solution adaptation contains 13.1 million
off-body points, while the solution-adaptive case contains 55 million off-body points. In all hybrid cases, the
5th order accurate scheme is used in the off-body.

Table 3. Summary of NACA 0015 wing mesh configurations. Stand-alone, hybrid unstructured, and hybrid
strand results presented.

configuration near-body pts. off-body pts. CL CD

stand-alone 4.8e6 0 0.913 0.0576
hybrid-unstructured 4.5e6 2.1e6 0.919 0.0562

hybrid-strand 7.5e6 13.1e6 0.915 0.0564
hybrid-strand, adapted 7.5e6 55.0e6 0.916 0.0562

As shown in Table 3, all mesh configurations produce comparable lift and drag coefficients. However,
major differences are observed in terms of the resolution of the trailing vortices. Figure 7 shows iso-surfaces
of vorticity, colored with velocity magnitude. The figure shows that the NSU3D stand-alone case quickly
dissipates the trailing vortices. When the high-order Cartesian grids are added, the vortex resolution increases
dramatically, especially for the solution adaptive case, which was set to refine to vorticity. While the vortex
resolution appears to be a function of off-body resolution and not the strand grids themselves, the results
indicate the success of the overall approach to resolve both near-body and off-body flow field features.

B. Isolated V-22 (TRAM) Rotor in Hover

The next set of results are for the Tilt Rotor Aeromechanics Model (TRAM), which is a quarter-scale model
of the Bell/Boeing V-22 Osprey tiltrotor isolated rotor. Results for this case have been obtained previously
by Potsdam and Strawn27 and Wissink et al.13 Here, we apply the strand-adaptive Cartesian approach to
the same configuration. Nominal operating conditions for the scale model include a tip Mach number of
0.625 and a tip Reynolds number of 2.1x106. We examine results for the θ = 14o collective condition in
steady, non-inertial hover.

We obtain results using both coarse and fine surface meshes, with and without off-body solution adap-
tivity. The specific configurations with the near-body and off-body grid sizes are shown in Table 4. The
strand length parameter is set to K = 20, resulting in a strand length of 40% of the tip chord length. The
smoothing residual limit is set to rs,RMS = 10−4. For all configurations, eight levels of Cartesian refinement
are used, with the finest level spacing equal to 5% of the tip chord length. For the first two cases listed in
Table 4 solution adaptivity is not applied. For the third case, the off-body grid is adapted to vorticity.

The results of the three configurations are shown in Table 4 and Figures 8 and 9. Table 4 indicates

Table 4. Summary of TRAM results at θ = 14o. Percent error from experimental values shown. Experimental
values are CT = 0.0149, CQ = 0.00165, and FM = 0.779.

surface mesh adapt near-body pts. off-body pts. CT CQ FM

coarse no 1.99e6 3.90e6 0.0141 (-5.4%) 0.00174 (5.5%) 0.683 (-12.3%)
fine no 9.08e6 3.98e6 0.0145 (-2.7%) 0.00171 (3.6%) 0.717 (-8.0%)
fine yes 9.08e6 102.5e6 0.0150 ( 0.7%) 0.00170 (3.0%) 0.760 (-2.4%)
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(a) coarse surface, no adapt (b) fine surface, no adapt (c) fine surface, adapt

Figure 9. Contours of vorticity overlaid on mesh for various mesh configurations, TRAM rotor.

several blade revolutions. This behavior can also be seen in Figure 9, which shows vorticity contours just
below the blade tip for the three configurations.

C. DLR-F6 Wing-body Transport (DPW III Test Case)

As a final demonstration of the strand-adaptive Cartesian approach, we present results using the DLR-F6
wing-body transport from the 3rd AIAA Drag Prediction Workshop.28 The configuration we tested contains
the FX2B fairing designed to reduce separation near the wing-body junction. One major difference in this
case from both the NACA wing and TRAM cases is the presence of significant amounts of strand clipping
to prevent overlapping at the sharp wing-body junction. We use the flow conditions specified the workshop,
including M = 0.75, α = 0.5o, and Re = 5x106. We compare our strand grid results to NSU3D stand-alone
results at the same operating conditions. In addition to the NSU3D stand-alone and strand grid results,
we also present results for a hybrid unstructured-Cartesian configuration, with the NSU3D stand-alone grid
trimmed a short distance from the geometry to interface with the Cartesian off-body system. Figure 10
shows constant-x and constant-y cuts of the strand-Cartesian mesh system. The strand length parameter
was set to K = 10, resulting in a strand length 1/6 of the reference chord length. As in our previous cases,
the smoothing residual limit is set to rs,RMS = 10−4.

The three mesh configurations we test are summarized in Table 5, showing the number of points used
in near- and off-body meshes and the corresponding computed lift and drag coefficients. All configurations
produce similar lift and drag values. A small but significant discrepancy in the computed drag may be
seen for the hybrid-strand configuration as compared to the other two configurations. Possible explanations
for the discrepancy include the inviscid approximation on the off-body grids and the strand vector bending
near the wing-body junction. A close-up of the clipped strand-Cartesian grid at the wing body junction
is shown in Figure 11, along with countours of density. Generally good overlap agreement is seen in the
density contours, with some noise present in the strand grid portions. An inspection of the clipped region
reveals clipping extending quite close to the surface at strand length values as low as K = 0.05, well within
the estimated turbulent boundary layer. In light of this, it is possible that the discrepancies in this region
are due to the inviscid method used on the Cartesian grids, which is a very poor approximation within the
turbulent boundary layer. In spite of these issues, the computed drag value appears to be within the spread
of the reported workshop results28 and experimental data.29

Pressure and skin friction coefficient profiles at various spanwise locations on the wing are shown in
Figures 12 and 13 for all three configurations. The pressure profiles show excellent agreement between the
three configurations, with slightly improved shock capturing exhibited using strand grids, possibly due to
the increased mesh resolution of the Cartesian grids near the intergrid region. The skin friction profiles
show similarly good agreement and shock capturing, with the exception of the spanwise location nearest the
wing-body junction, shown in Figure 13(a). Again, the discrepancy may also be related to local clipping
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fine surface, no adapt fine surface, adapt (vorticity)(a) coarse surface, no adapt – mesh (b) coarse surface, no adapt – vorticity

(c) fine surface, no adapt – mesh (d) fine surface, no adapt – vorticity

(e) fine surface, adapt – mesh (f) fine surface, adapt – vorticity

Figure 8. Hybrid meshes used for the isolated TRAM calculation at θ = 14o and corresponding contours of
vorticity.
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DLR F6 Wing-Body-Fairing (1)

at the wing-body junction. Despite these discrepancies in the locally clipped region, the solution at other
stations appears largely unaffected.

Figure 10. Hybrid mesh for the DLR-F6 FX2B wing-body-fairing configuration.

Figure 11. Mesh and density contours at wing body junction for the DLR-F6 FX2B case.

Table 5. Summary of DLR-F6 FX2B wing-body-fairing configuration. Stand-alone, hybrid unstructured, and
hybrid strand results presented.

configuration half/full-span near-body pts. off-body pts. CL CD

stand-alone full 11.0e6 0 0.558 0.0282
hybrid-unstructured full 10.0e6 5.0e6 0.557 0.0282

hybrid-strand half 6.3e6 21.5e6 0.559 0.0271

V. Conclusions and Future Work

We investigate an approach for high Reynolds number viscous CFD using an automatic strand-Cartesian
grid generation scheme. The strand grid generation procedure is fully automatic given an adequate surface
grid. Since strand grids are straight line extrusions of the surface grid, they may be stored entirely on each
processor in a parallel framework, leading to increased scalability in the domain connectivity algorithms.
The semi-structured nature of strand grids is favorable to computations on high-aspect ratio grids used for
high Reynolds number flows.

The strand grid generation process depends on some basic parameters, the effects of which were studied
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off-body region. All configurations use the same surface mesh. The stand-alone mesh contains 4.8 million
points using a mixed prismatic-tetrahedral mesh. The same mesh is used for the hybrid-unstructured case
in the near-body, but is trimmed a short distance from the wing surface to interface with a Cartesian
mesh system of 2.1 million points. The hybrid-strand cases use a strand grid with 7.5 million points with
a length parameter of K = 10, corresponding to a strand length of around 1/5 of the wing chord. As
seen in Figure 7, the strand mesh is constructed significantly smaller than the unstructured mesh used in
the hybrid-unstructured case in order to transition sooner to the more accurate Cartesian mesh system.
Consequently, an extra level of Cartesian refinement is needed for the strand cases in order to match the
spacing at the clipping indices. The hybrid-strand case with no solution adaptation contains 13.1 million
off-body points, while the solution-adaptive case contains 55 million off-body points. In all hybrid cases, the
5th order accurate scheme is used in the off-body.

Table 3. Summary of NACA 0015 wing mesh configurations. Stand-alone, hybrid unstructured, and hybrid
strand results presented.

configuration near-body pts. off-body pts. CL CD

stand-alone 4.8e6 0 0.913 0.0576
hybrid-unstructured 4.5e6 2.1e6 0.919 0.0562

hybrid-strand 7.5e6 13.1e6 0.915 0.0564
hybrid-strand, adapted 7.5e6 55.0e6 0.916 0.0562

As shown in Table 3, all mesh configurations produce comparable lift and drag coefficients. However,
major differences are observed in terms of the resolution of the trailing vortices. Figure 7 shows iso-surfaces
of vorticity, colored with velocity magnitude. The figure shows that the NSU3D stand-alone case quickly
dissipates the trailing vortices. When the high-order Cartesian grids are added, the vortex resolution increases
dramatically, especially for the solution adaptive case, which was set to refine to vorticity. While the vortex
resolution appears to be a function of off-body resolution and not the strand grids themselves, the results
indicate the success of the overall approach to resolve both near-body and off-body flow field features.

B. Isolated V-22 (TRAM) Rotor in Hover

The next set of results are for the Tilt Rotor Aeromechanics Model (TRAM), which is a quarter-scale model
of the Bell/Boeing V-22 Osprey tiltrotor isolated rotor. Results for this case have been obtained previously
by Potsdam and Strawn27 and Wissink et al.13 Here, we apply the strand-adaptive Cartesian approach to
the same configuration. Nominal operating conditions for the scale model include a tip Mach number of
0.625 and a tip Reynolds number of 2.1x106. We examine results for the θ = 14o collective condition in
steady, non-inertial hover.

We obtain results using both coarse and fine surface meshes, with and without off-body solution adap-
tivity. The specific configurations with the near-body and off-body grid sizes are shown in Table 4. The
strand length parameter is set to K = 20, resulting in a strand length of 40% of the tip chord length. The
smoothing residual limit is set to rs,RMS = 10−4. For all configurations, eight levels of Cartesian refinement
are used, with the finest level spacing equal to 5% of the tip chord length. For the first two cases listed in
Table 4 solution adaptivity is not applied. For the third case, the off-body grid is adapted to vorticity.

The results of the three configurations are shown in Table 4 and Figures 8 and 9. Table 4 indicates

Table 4. Summary of TRAM results at θ = 14o. Percent error from experimental values shown. Experimental
values are CT = 0.0149, CQ = 0.00165, and FM = 0.779.

surface mesh adapt near-body pts. off-body pts. CT CQ FM

coarse no 1.99e6 3.90e6 0.0141 (-5.4%) 0.00174 (5.5%) 0.683 (-12.3%)
fine no 9.08e6 3.98e6 0.0145 (-2.7%) 0.00171 (3.6%) 0.717 (-8.0%)
fine yes 9.08e6 102.5e6 0.0150 ( 0.7%) 0.00170 (3.0%) 0.760 (-2.4%)
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DLR F6 Wing-Body-Fairing (2)
• Skin friction coefficient

• local discrepancy at 
3% span near wing-
body junction
– due to clipping near 

geometry surface 
(K=0.05)

at the wing-body junction. Despite these discrepancies in the locally clipped region, the solution at other
stations appears largely unaffected.

Figure 10. Hybrid mesh for the DLR-F6 FX2B wing-body-fairing configuration.

Figure 11. Mesh and density contours at wing body junction for the DLR-F6 FX2B case.

Table 5. Summary of DLR-F6 FX2B wing-body-fairing configuration. Stand-alone, hybrid unstructured, and
hybrid strand results presented.

configuration half/full-span near-body pts. off-body pts. CL CD

stand-alone full 11.0e6 0 0.558 0.0282
hybrid-unstructured full 10.0e6 5.0e6 0.557 0.0282

hybrid-strand half 6.3e6 21.5e6 0.559 0.0271

V. Conclusions and Future Work

We investigate an approach for high Reynolds number viscous CFD using an automatic strand-Cartesian
grid generation scheme. The strand grid generation procedure is fully automatic given an adequate surface
grid. Since strand grids are straight line extrusions of the surface grid, they may be stored entirely on each
processor in a parallel framework, leading to increased scalability in the domain connectivity algorithms.
The semi-structured nature of strand grids is favorable to computations on high-aspect ratio grids used for
high Reynolds number flows.

The strand grid generation process depends on some basic parameters, the effects of which were studied
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high Reynolds number flows.
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Figure 13. Comparison of skin friction coefficient at selected span locations for the DLR-F6 FX2B case.
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Progress in Strand Grid 
Development

• July 2010
– obtain validation results with NSU3D solver on strand grids
– preliminary 3d strand solver complete - inviscid, directional 

multigrid

• October 2010
– full 3d strand solver complete - viscous, unsteady, moving 

mesh

– 2d solver + PUNDIT + adaptive Cartesian, in progress

• January 2011
– complete 2d strand infrastructure
– 3d solver + PUNDIT + adaptive Cartesian, in progress

• July 2011
– complete 3d strand infrastructure

• October 2011
– preliminary testing of 3d strand method complete
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V. Grid Quality Effects on Stretched Grids

Once the order of accuracy was determined with tests on isotropic grids, the performance of the schemes
on stretched meshes of various types was tested. A total of six mesh types were used, shown in Figure 5.
Flat and curved surface boundary layer type meshes were tested, along with the corresponding manufactured
solutions shown in Figures 2(d) and 2(e) and described in Equations 10 and 11. Three levels of mesh
stretching were tested, including wall cell aspect ratios of 102, 104, and 106. These mesh shapes, cell types,
and manufactured solutions are representative of typical high Reynolds number Navier-Stokes flows. As in
the isotropic tests, purely inviscid and purely viscous discretizations were tested independently to isolate the
effects of mesh stretching on each discretization type.

(a) flat quadrilateral (b) flat equilateral triangle (c) flat right triangle

(d) curved quadrilateral (e) curved equilateral triangle (f) curved right triangle

Figure 5. Stretched grids used to assess grid quality effects.

The results of error convergence tests on inviscid terms for the flat surface meshes are shown in Figure
6. Figure 6(a) shows error convergence results for the linear node- and corrected node-centered schemes for
flat surface meshes composed of equilateral and right triangular meshes of wall cell aspect ratio 104. Both
cell types performed nearly identically, and the corrected scheme maintained its third order accuracy despite
the stretching. A similar study was performed for the cell-centered inviscid scheme, showing uniform second
order accuracy in Figure 6(a). For the cell-centered scheme quadrilateral grids produced slightly less error
than trianglar grids.

A comparison of the inviscid node- and cell-centered schemes for equilateral flat surface grids of various
aspect ratios is shown in Figure 6(c). An idential study, but using right triangle flat surface grids is shown in
Figure 6(d). In both these figures, the corrected scheme shows third order accuracy, while all others schemes
show second order accuracy. Of the second order schemes, the cell-centered schemes produce slightly less
error than the node-centered schemes as the aspect ratio increases. In addition, these two plots show that,
while the corrected scheme is third order accurate, it appears to be more sensitive to aspect ratio than either
the node-centered linear scheme or the cell-centered scheme. This may be due to the higher order gradient
computation needed for the corrected scheme, which becomes ill-conditioned as the aspect ratio increases.

While the inviscid study on stretched meshes seems to indicate only a slight advantage of the cell-centered
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of Figures 2(d)-2(e). Similar to the manufactured solution of Sun,6 the solution of Figure 2(d) has the form

Q(x, y) = 1− e
−(y−y0)√
cµ(x−x0) , (10)

with c = .59 abd µ = 10−6. The solution of Figure 2(e) has a similar form, expressed in polar coordinates as

Q(x, y) = 1− e
−(r−r0)√
cµ(θ0−θ) . (11)

It should also be noted that the results shown in Table 1 indicate third order accuracy for the node-
centered linear scheme on unperturbed meshes. When the MMS source term does not receive the proper
Galerkin weighting, only a second order result is obtained. This is likely the reason for the second order
results observed by Diskin et al.9 But truly the scheme is third order for regular meshes, a fact which may
boost accuracy in smooth grid regions. Also note that the corrected scheme maintains third order accuracy
even for perturbed grids. These results will be confirmed with further tests.

(a) Ringleb flow (b) Euler manufactured solution (c) scalar manufactured solution

(d) manufactured boundary layer (e) manufactured curved boundary layer

Figure 2. Exact and manufactured solutions used for error convergence studies.

Table 1. Validation of the MMS procedure for the linear and corrected schemes using exact Euler, manufac-
tured Euler, and manufactured scalar solutions. Table values are order of accuracy. Perturbed grid order of
accuracy given first, followed by uniform grid order of accuracy in parenthesis

Ringleb Euler MMS scalar MMS
Node-centered linear 2(3) 2(3) 2(3)

Node-centered corrected 3(3) 3(3) 3(3)
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Table 1. Validation of the MMS procedure for the linear and corrected schemes using exact Euler, manufac-
tured Euler, and manufactured scalar solutions. Table values are order of accuracy. Perturbed grid order of
accuracy given first, followed by uniform grid order of accuracy in parenthesis

Ringleb Euler MMS scalar MMS
Node-centered linear 2(3) 2(3) 2(3)

Node-centered corrected 3(3) 3(3) 3(3)
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• Discretization schemes
– node-, cell-centered, corrected (new)

• Cell types
– quadrilateral, equilateral tri., right tri.

• Physical models
– inviscid, viscous

– method of manufactured solutions
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V. Grid Quality Effects on Stretched Grids

Once the order of accuracy was determined with tests on isotropic grids, the performance of the schemes
on stretched meshes of various types was tested. A total of six mesh types were used, shown in Figure 5.
Flat and curved surface boundary layer type meshes were tested, along with the corresponding manufactured
solutions shown in Figures 2(d) and 2(e) and described in Equations 10 and 11. Three levels of mesh
stretching were tested, including wall cell aspect ratios of 102, 104, and 106. These mesh shapes, cell types,
and manufactured solutions are representative of typical high Reynolds number Navier-Stokes flows. As in
the isotropic tests, purely inviscid and purely viscous discretizations were tested independently to isolate the
effects of mesh stretching on each discretization type.

(a) flat quadrilateral (b) flat equilateral triangle (c) flat right triangle

(d) curved quadrilateral (e) curved equilateral triangle (f) curved right triangle

Figure 5. Stretched grids used to assess grid quality effects.

The results of error convergence tests on inviscid terms for the flat surface meshes are shown in Figure
6. Figure 6(a) shows error convergence results for the linear node- and corrected node-centered schemes for
flat surface meshes composed of equilateral and right triangular meshes of wall cell aspect ratio 104. Both
cell types performed nearly identically, and the corrected scheme maintained its third order accuracy despite
the stretching. A similar study was performed for the cell-centered inviscid scheme, showing uniform second
order accuracy in Figure 6(a). For the cell-centered scheme quadrilateral grids produced slightly less error
than trianglar grids.

A comparison of the inviscid node- and cell-centered schemes for equilateral flat surface grids of various
aspect ratios is shown in Figure 6(c). An idential study, but using right triangle flat surface grids is shown in
Figure 6(d). In both these figures, the corrected scheme shows third order accuracy, while all others schemes
show second order accuracy. Of the second order schemes, the cell-centered schemes produce slightly less
error than the node-centered schemes as the aspect ratio increases. In addition, these two plots show that,
while the corrected scheme is third order accurate, it appears to be more sensitive to aspect ratio than either
the node-centered linear scheme or the cell-centered scheme. This may be due to the higher order gradient
computation needed for the corrected scheme, which becomes ill-conditioned as the aspect ratio increases.

While the inviscid study on stretched meshes seems to indicate only a slight advantage of the cell-centered
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effects of mesh stretching on each discretization type.
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Figure 5. Stretched grids used to assess grid quality effects.

The results of error convergence tests on inviscid terms for the flat surface meshes are shown in Figure
6. Figure 6(a) shows error convergence results for the linear node- and corrected node-centered schemes for
flat surface meshes composed of equilateral and right triangular meshes of wall cell aspect ratio 104. Both
cell types performed nearly identically, and the corrected scheme maintained its third order accuracy despite
the stretching. A similar study was performed for the cell-centered inviscid scheme, showing uniform second
order accuracy in Figure 6(a). For the cell-centered scheme quadrilateral grids produced slightly less error
than trianglar grids.

A comparison of the inviscid node- and cell-centered schemes for equilateral flat surface grids of various
aspect ratios is shown in Figure 6(c). An idential study, but using right triangle flat surface grids is shown in
Figure 6(d). In both these figures, the corrected scheme shows third order accuracy, while all others schemes
show second order accuracy. Of the second order schemes, the cell-centered schemes produce slightly less
error than the node-centered schemes as the aspect ratio increases. In addition, these two plots show that,
while the corrected scheme is third order accurate, it appears to be more sensitive to aspect ratio than either
the node-centered linear scheme or the cell-centered scheme. This may be due to the higher order gradient
computation needed for the corrected scheme, which becomes ill-conditioned as the aspect ratio increases.

While the inviscid study on stretched meshes seems to indicate only a slight advantage of the cell-centered
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Triangulation of Non-Planar 
Faces in 3D
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Figure 8. Isotropic grids used to assess the effect of non-planar faces in three dimensions, along with error
convergence results.
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Slow Convergence - Explicit on 
Cartesian Grids(a) strand-Cartesian mesh (b) adaptive mesh and voricity contours

(c) surface plot of vorticity (d) convergence history

Figure 4. Results of the TRAM calculation at θ = 14o, showing slow convergence.
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(a) strand and Cartesian mesh system (b) clipped mesh at wing-body junction

(c) density contours, y = 194.53mm (d) convergence history

Figure 5. Mesh and results of the DLR-F6 wing-body-fairing configuration.
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100,000 
Explicit 
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Full Approximation Storage 
Multigrid

stage of an m-stage Runge-Kutta scheme of Jameson:19

Q(n+1,0) = Qn

...
Q(n+1,j) = Qn − αj∆t

(
R(j−1) + P

)

...
Q(n+1) = Q(n+1,m).

In this manner, the coarse level iterations are driven by the fine level residuals. At convergence on the fine
mesh, the coarse levels do nothing to alter the converged solution.

An iteration on a coarse level results in a corrected solution, Q+
k . Coarse level corrections, based on the

difference between the corrected solution and the original solution transfered from the fine level, are then
interpolated back to the fine grid with a prolongation operator, Ik−1,k,

Q+
k−1 = Qk−1 + Ik−1,k(Q+

k −Q(0)
k ). (3)

The above procedure is invoked recursively on all refinement levels, which has the effect of quickly damping
high frequency errors on the fine mesh. In addition, local time stepping with implicit residual smoothing in
each coordinate direction is used.

The Cartesian flow solver in this work is based on the finite difference method, where the solutions are
stored at the nodes. Illustrations of the multigrid transfer operations in two dimensions are shown in Figure
6, where the nested structure with a fine and coarse grid is shown. Coarse grid nodes are large circles, and
fine grid nodes are small circles. As shown in Figure 6(a), residual restriction is performed with the given
weights for coincident and surrounding fine level nodes. Note that the weights for each coarse level node
sum to one, and those of each fine level node sum to 1

4 excluding boundary effects. At the boundary of the
fine level, the weights sum to values less than those in the interior, but no degradation of convergence was
observed. The forcing term, Pk, of Equation 2, which consists of aggregated fine grid residuals is only added
to those coarse level nodes which lay underneath fine level meshes, as shown in Figure 6(b). The blue nodes
solve the unforced equations as regular field nodes, while the red nodes serve only as coarse level multigrid
nodes to accelerate convergence of the fine grid above it. However, once the forcing terms are added to the
appropriate nodes in the coarse level, no distinction is made between blue and red nodes in the solver. Along
with the residual restriction, the solutions are also restricted to the coarse levels by a trivial injection process
at coincident nodes.

1/161/16

1/16 1/16

1/8

1/8

1/81/4

1/8

(a) residual restriction

no MG forcing term
MG forcing term

(b) MG forcing term nodes

1/4

1/4 1/4

1/4

1/2

1/2

(c) prolongation of corrections

Figure 6. Multigrid transfer operations.

The prolongation operation, shown in Figure 6(c) is simple linear interpolation. Three types of fine grid
nodes exist with respect to their location in the coarse grid: coincident nodes, mid-side nodes, and center
nodes, Corrections for each of these node types are obtained by weighting the corrections of surrounding
nodes in a linear manner.
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Residual Restriction ProlongationForcing Term

method of clipping and refining has not resulted in excessive numbers of nodes.

Figure 2. Adaptive Cartesian grid hierarchy.

In addition to gemetric criteria of refinement to the strand grid clipping resolution, the Cartesian grids
are also adapted to solution features, such as vorticity. An interval of “adapt” cycles may be defined at which
the existing off-body grid system is tagged for refinement. An upper limit on the number of refinement levels
is pre-determined to avoid excessive numbers of nodes. During a typical computation, thousands of Cartesian
patches may be created, each contributing to the overall mesh definition. However, the grid description still
remains small, due to the compact representation of each Cartesian patch.

The SAMRAI12 package from Lawrence Livermore National Lab is used to manage the off-body Cartesian
system, while a version of ARC3D13from NASA is used to solve the flow. A variety of spatial orders up
to 5th order exist in the code. An explicit 3rd order Runge-Kutta scheme is used resolve both steady and
time-dependent computations.

C. Domain Connectivity

Domain connectivity software is employed in order to couple near-body strand grids with off-body Cartesian
grids. The task of the domain connectivity is two-fold. First, donor cells and recipent nodes must be
identified. Either conventional explicit hole cutting or the implicit hole cutting strategy of Lee and Baeder14
is used to remove Cartesian nodes that fall within strand grid regions. Intergrid boundary points are
identified, and sufficient donor cells are located. All fringes of the Cartesian mesh system must receive
flow information from the near-body strand grids. All clipped nodes in the strand grids may either receive
flow information from neighboring strand grids or from the Cartesian system. The domain connectivity
is performed in parallel using the Parallel Unsteady Domain Information Technology (PUNDIT) software
package of Sitaraman et al.15

III. Demonstration of Current Cartesian-Strand Grid Method

As described in the previous section, the off-body Cartesian AMR solver uses a 3rd order Runge-Kutta
time-accurate explicit time integration scheme. This scheme proves useful for unsteady problems when small
physical time steps are desired and off-body grids are coarse enough to avoid severe time step limitations.
However, for adaptively refined cases, the CFL limitation leads to prohibitively small time steps. This
problem is more accute when the Cartesian scheme is used in conjunction with strand grids, which often
require locally very fine Cartesian grids. We present three cases run with the current explicit implementation
in order to highlight these difficulties.

The first case highlights the difficulty with the explict solution method for unsteady flows. This case,
shown in Figure 3, is a cylinder in cross flow at Re = 100 and M = 0.1. Experimental results indicate
periodic shedding at a Strouhal number of around St = 0.164, or about 6 periods of shedding every second
for a cylinder of unit diameter.16 The first column of of figures in Figure 3 pertains to a solution obtained
with NSU3D in stand-alone mode with no off-body Cartesian meshes. The second column in the Figure
pertains to a hybrid strand-Cartesian simulation of the same problem. Using a conventional second order
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• Advantages of multigrid on AMR meshes
– coarse meshes already exist
– textbook O(N) convergence obtainable

– transfer operators are trivial

• Other methods to consider
– local time-stepping, sub-cycling, implicit
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Demonstration of Multigrid on 
AMR Meshes

Table 2. Number of cycles and time required to converge for initially perturbed flow with and without nested
multigrid.

multigrid no multigrid
levels cells cycles time(s) time(s)/cycle cycles time(s) time(s)/iter.

1 256 67 0.68 0.010 123 0.76 0.006
2 512 68 1.11 0.016 234 2.34 0.010
3 768 68 1.53 0.022 356 4.88 0.014
4 1024 71 2.86 0.040 516 8.64 0.017
5 1280 72 3.66 0.051 721 15.16 0.021
6 1536 73 4.29 0.059 941 22.66 0.024
7 1792 73 4.78 0.065 1152 31.11 0.027
8 2048 73 5.49 0.075 1306 40.17 0.031
9 2304 73 6.01 0.082 1614 55.44 0.034
10 2560 72 6.65 0.092 1567 62.14 0.040
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Figure 8. Convergence characteristics of perturbation test problem with and without multigrid.
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V. Results

A simple test case was set up to evaluate the performance of the multigrid algorithm on nested Cartesian
meshes. A square domain consisting of 16 cells on the coarsest level was constructed, with successively finer
grids added. Each finer grid also consisted of 16 cells and was added to the center of the domain. the
result was a series of centered telescoping grids, shown in Figure 7 for 4 refinement levels. The number of
refinement levels ranged from 1 level to 10 levels, which is typical of a Cartesian off-body system refined to
clipped strand grids. The two dimensional laminar Navier-Stokes equations were solved on the grid system.
The boundary conditions were set to Dirichlet freestream values, while the interior of the flow was initialized
to randomly perturbed values up to 10% of the freestream quantities. Flow conditions were set to M = 0.5,
and Re = 106. The iterative algorithm was run until the freestream values were recovered to a certain
threshold. Results were obtained with and without multigrid. For the multigrid solutions, a simple V-cycle
was used.

(a) grid system with 4 refinement levels (b) initially perturbed flow

Figure 7. Nested Cartesian multigrid test case.

The results of this test for various levels of refinement are shown in Table 2 and Figure 8. Table 2 shows
the number of multigrid cycles and total time needed for convergence, along with the time per cycle for up
to 10 levels of refinement. The total number of cells is also listed for each test grid. Convergence history is
plotted for some of the grid cases in Figure 8(a), and the total time for convergence from the table is plotted
in Figure 8(b). The results show that the number of iterations to recover freestream is nearly constant with
multigrid, but increases in a linear fashion without multigrid. As a result, the solution times increase linearly
with multigrid and quadratically without multigrid. Therefore, the theoretical O(n) work load is roughly
obtained with the nested multigrid algorithm. As shown in the time per cycle, there is a certain amount
of overhead associated with the restriction and prolongation operations, but the increase remains modest
compared to the reduction in overal solution time. At 10 levels of refinement, the total solution time was
reduced by nearly an order of magnitude.

VI. Conclusions and Future Work

Recent tests using strand grids and adaptive Cartesian meshes have indicated the need to address conver-
gence issues associated with the current explicit time-stepping scheme in the off-body solver. The problem is
made worse for unsteady cases, and cases with high degrees of mesh refinement due to clipping close to the
body or solution adaptation. In order to address the convergence issue, a nested multigrid algorithm has been
proposed, which makes use of available data structures in an efficient manner. No additional coarse mesh
data is needed, since it already exists by construction of the block-structured Cartesian grids. Preliminary
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Test case: 
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