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Outline 

 Overture Framework

 Definition of various problems

 Computational Framework

 Key results and discussions

 Concluding remarks

 

➣ Overlapping grids 

➣ Fluid dynamics

➣ Structural dynamics

➣ Rigid body dynamics
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Overture / OverBlown (CGOverture / OverBlown (CGINSINS) Codes) Codes

Open-Source
Overture Framework

(LLNL Codes)

Overset 
Moving

Grids (ogen)

Overset Flow
Solver (Over-
Blown/cgins)

Parallel 
Computing on

Stationary
Grids A++ Framework

Operator
Overloading

Interface
With
PETSc

CSD Solver
(cgSD)

Overture Framework  

Deforming Grid
3D + Improvements

to Numerical
Stability

FSI
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Summary of Work Undertaken using Overture  

Rigid and flexible flapping airfoils and wings

Dynamic Stall &
Lift Hysteresis

Passive Flight

Vortex dynamics &
Thrust Generation

Wing deformation &
Fluid Structure Interaction

Lift Decreases with increase in
angle of attack

How surrounding vorticity field
Influences thrust

Accelerating motion of
a flapping wing due to 

Aerodynamic forces

Effect of flexure on 
Aerodynamic characteristics
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Ogen Mesh Ogen Mesh 
GeneratorGenerator

Overlapping / Composite / Overset / Chimera Grids  

Individual grids can be

Generated independently

Interpolation



6

Two-Dimensional Moving Grid (Rigid) Three-Dimensional Deforming Grid

Moving Overlapping Grids  
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Computational Flow Modeling

(A) Fluid Dynamics – Incompressible Navier Stokes Equations

Pressure Poisson Equation

 2nd Order spatial differences

2nd Order Crank Nicolson Implicit (For Viscous terms)

2nd Order Adams Predictor-Corrector (Explicit )

u  Velocity Vector

p  Static pressure

ρ  Fluid density
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Computational Flow Modeling
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Computational Modeling

(B) 6 DOF Rigid Body Dynamics

OrientationOrientation

PositionPosition

FA= Net Aerodynamic Force

T = Net Aerodynamic Torque / Moment about Centre of mass ( xcms)

M = Mass of the body

I   = Components of Principal moments of Inertia

ω= Angular velocity vector

ei = Principal axes. 

τ  = Stress Tensor    
FA

T

x

y

e1
e2
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Flapping 
Motion

WING

Wing deformation 
due to 

aerodynamic 
forces

Air flowing over the wing

Aerodynamic ForcesRigid body motion of the wing

Computational Fluid-Structure Interaction and 
Coupling Issues 



Computational Structural Dynamics Modeling

Structural Dynamics
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Kirchhoff’s Plate Equation
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E : Modulus of Elasticity , h : Plate Thickness, ν : Poissons Ratio, mxz : Mass per unit area,     
                                            q: Load Acting, I: Moment of Inertia

Vertical Oscillations

Rigid Flexible

Euler-Bernoulli Beam Equation
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Computational Structural Dynamics Modeling

Structural Dynamics
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Discretization of the Euler-Bernoulli Beam Equation :
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Computational Structural Dynamics Modeling
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Fluid – Structure Coupling
Partitioned Approach (Dirichlet – Neumann Approach) With Inner Iterations :

Time = Tn

Transfer stresses 
through interpolation

Time = Tn+1

14
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Load Transfer from Fluid to Solid: 

STEP 1 

Interpolate Wing Caps on to Wing

Fluid – Structure Coupling
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Stress Transfer from Fluid to Solid: 

Interpolate CSD Grid from CFD

(Upper) (Lower)

Fluid – Structure Coupling
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Actual (CFD)

Upper Surface

Lower Surface

Fluid – Structure Coupling 
Comparison of Actual and Interpolated Stress

Interpolated (CSD)



Fluid – Structure Coupling
Partitioned Approach (Dirichlet – Neumann Approach) With Inner Iterations :

Time = Tn

Transfer stresses 
through interpolation

Time = Tn+1

Transfer displacements 
through interpolation

Local 
Iterations How to choose ω
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Computational Cases Investigated

Rigid Plunging Wing

Plunging and (active) deforming airfoil
 
Plunging and (passive) deforming airfoil
 
Deformation of a beam in a fluid
  
FSI Coupling Issues
 
Plunging and passively deforming wing
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Rigid Plunging Wing 

Motion along Y-axis is given by :

 Reduced frequency, k = 0.5, 1.0, 1.82, 2.5, 3.5 and 4.0
 Reynolds number, Re = 104 

Comparison of Aerodynamic forces and moments    
Experiment       Heathcote et al. (2008)
Navier-Stokes   Young (2005)
Panel Method    Young (2005)
Linear Theory    Garrick (1936)
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Rigid Plunging Wing 
Thrust Coefficient Power Input Coefficient

Propulsive Efficiency
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Plunging and Deforming (Active) Airfoil

X

Y

NACA 0014 Airfoil

Vertical Oscillations

 + Chordwise deformationKinematics :

            STATIC:

      RIGID BODY MOTION:

RIGID BODY + DEFORMATION:

1 . Rigid Plunging : B = 0.4, k=2 , Re=104, A =0  -  Tuncer and Kaya (2003)

2.  Plunging with Deformation : A = 0.3, p = 2, xc=0, Q=0, φ=0,  Miao and Ho (2006)
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1 . Rigid Plunging : B = 0.4, k=2 , Re=104, A =0  -  Tuncer and Kaya (2003)

Plunging and Deforming (Active) Airfoil
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2.  Plunging with Deformation : A = 0.3, p = 2, xc=0, Q=0, φ=0,  Miao and Ho (2006)

Plunging and Deforming (Active) Airfoil
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Cp Contours at the mean position 

Miao & Ho (2006) Present computation 

Plunging and Deforming (Active) Airfoil
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Rigid Flexible

Heathcote et al. (2004)

Tang et al. (2007)

Rigid : Length 0.4c, Thickness 0.11c

Flex  : Length 0.6c, Thickness 0.005c

Re = 9000

E   = 2.05x1010ρU2

k   = fc/U = 1.4 

ρb = 7.85 ρ
Mesh Size : 500 x 11, 200 x 150

k = reduced frequency , f = frequency, c = beam chord, ρb= beam density, ρ = Fluid Density, U = Free-
Stream Velocity,  E = Modulus of Elasticity 

Vertical Oscillations

Plunging and Deforming (Passive) Airfoil
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Tip Displacement With Net Iteration Index  for  ∆t = 1e-3

STABLE

STABLE 

UNSTABLE

timeTi
p 

Di
sp

la
ce

m
en

t

t=0 t=dt  t=2dt

Effect of Time Step, Relaxation and Damping

Rigid : Length 0.4c, Thickness 0.11c      
Flex  : Length 0.6c, Thickness 0.005c      
    Re = 9000                                                 
     E   = 2.05x1010ρU2                                  
     k   = fc/U = 1.4                                        
     ρb = 7.85 ρ
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Tip Displacement With Net Iteration Index 

 ∆t = 5e-4  ∆t = 1e-4

Effect of Time Step, Relaxation and Damping
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Effect of Time Step, Relaxation and Damping
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b/c   =  0.003

ρb/ρ = 6667

Γ = EI/ρbU2bc2  =  2

Re = 500

b = beam thickness , c = beam chord, ρb= beam density, ρ = Fluid Density, U = Free-Stream Velocity

E = Modulus of Elasticity, I = moment of Inertia 

Plate is initially deflected in 
its first mode for ¼ cycle

Shin et al. (2007)

Flow Induced Deformation of a Beam 

Flow 
Direction

Cantilever 
Beam
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Tip Displacement with Time

Vorticity Contours

Flow Induced Deformation of a Beam 

Explicit vs Implicit coupling
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Heathcote et al. (2008) - Experiments

Aono et al. (2009) - Computations

Plunge 
Oscillations

Deformation along the Span-wise direction

Deformed state

Re = 10000

E   = 200 Gpa

k   = fc/U = 1.82 

ρb = 7.85 ρ (Steel Plate)

Typically 20 Inner Iterations (Correction Steps) with a ∆t = 2.5x10-3 s 

Plunging and Deforming Wing 
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Thrust Coefficientz

y

x

y

x

y

z

Plunging and Deforming Wing 
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Concluding Remarks  

A computational framework has been developed to couple fluid dynamics, 
rigid body dynamics, and structural dynamics

 Developed a partitioned coupling approach for fluid-structure 
interaction problems    

 Importance of relaxation for partitioned coupling approaches

 Coupling an external structural solver with cgins – under 
progress
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Access my Channel @ youtube

http://www.youtube.com/user/2008cfd 

http://www.youtube.com/user/2008cfd
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