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Background

Industrial problem

Noise generated in flows by valves in pipe systems of power plants

Non-linear aeroacoustic interactions in confined flows

Undesirable high pressure acoustic levels, noxious excitation of
structural vibrations ...

Need of unsteady data for:

prediction of noise sources,

propagation of the noise generated,

understanding of physical phenomena.
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Context

Direct computation of aerodynamic noise (DNC)

Computation of the aerodynamic and the acoustic fields in the
same simulation (via DNS or LES),

Need to accurately resolve high-wavenumber fluctuations,

Use of low-dissipative and low-dispersive schemes (FD, ...).

⇒ Development of Code Safari (Emmert PhD 2007, Daude et al. AIAA

Paper 2008):

Compressible turbulent flows,

Coupling between flow and acoustics,

Application to configurations with industrial relevance.
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Governing equations

3-D compressible unsteady Navier-Stokes equations written in
curvilinear coordinates:
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Conservative variables U = (ρ, ρu, ρe)T ,

J transformation Jacobian (x , y , z)→ (ξ, η, ζ),

Perfect gas, Newtonian fluid, Fourier law, Sutherland’s law.

Geometrical conservation relations:
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Conservative form for spatial metrics
(Thomas & Lombard AIAA J. 1979)
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Numerical algorithm

Numerical discretization

Spatial discretization: optimized centered finite difference
schemes (Bogey & Bailly JCP 2004)

Time integration: explicit Runge-Kutta schemes

Selective filtering: optimized centered low-pass filters
(Bogey & Bailly JCP 2004)

LES strategy: approach based on relaxation filtering
(Bogey & Bailly JFM 2009)

Present numerical method:

Spectral-like accuracy,

Limited to Cartesian meshes
⇒ Difficulty to tackle complex geometries.
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Numerical algorithm

Multi-domain approach

Use of overset-grid techniques with high-order interpolation
procedure (Delfs AIAA Paper 2001),

Use of the free library Overture developed at Lawrence
Livermore Laboratory (Henshaw 1998),

Communication performed via high-order Lagrangian
polynomials (Scott & Sherer JCP 2005, Desquesnes et al. JCP 2006):
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Simplified valve geometry

Real-life geometry (too complex details to model)

Ability of Code Safari to reproduce fluid/acoustic couplings ?

Simple 2-D geometry: ducted cavity model
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Simplified valve geometry

ρ0

p0

M0

H

L

Two physics (two characteristic length scales):

Rossiter’s mode Tranverse duct mode

StR =
nR − α

M0 + 1/κ
Std =

ndL

2HM0

Lock-in phenomena: coupling of Rossiter’s and duct modes;

StR ≈ Std
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Simplified valve geometry

Case configuration retained for studies

Partially covered,

h = 0.02 m,

W = 0.2 h

M0 = 0.18,

ReH = 5.6× 105,

Exp. obv. at M0 = 0.18:
2RM couples with 1DM

Upstream boundary layer:
Mean flow profile:

ub(y)

U0
=

(y

δ

)1/n

with δ = 8.8 mm and n = 8.5
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Computational representation

11 composite grids,

38× 106 points,

Computed by Nprocs = 206 processors,

∆y+ = 11 of inflow profile,

No turbulent fluctuations added,

Periodic boundary conditions in spanwise direction,

Slip conditions on the upper duct wall.
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Computational representation

Numerical results

Two physics: turbulence in the cavity & acoustic waves in the duct

Spanwise average vorticity modulus

Pressure fluctuations

2nd Rossiter mode and 1st Duct mode dominant

Lock-in phenomena well retrieved,

overset-grid approach: to adapt the cell size to the dynamics
investigated.
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Toward the real geometry ...

Introduction of an intermediate geometry:

Mesh strategy:
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Toward the real geometry ...

Computational domain:

Preliminary results: acoustic pressure pulse

overset-grid approach: to realize grids around realistic
geometries
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Conclusions

High-order finite difference schemes on overset grids suitable
for compressible LES on CAA applications:

Large-Eddy Simulation of (simple) confined cavity flow,

Prediction of flow/acoustics coupling.

Overset-grid strategy suitable:

to preserve the high-accuracy of FD schemes on non-trivial
bodies,

to adapt the cell size to the dynamics investigated,

to realize grids around realistic geometries.
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Future work

To perform the LES of the flow in the intermediate geometry,

To deal with the real-life geometry:

CAO details “suitable” for CFD computations (general
problem for industrial components)

Computational domain (based on the strategy used for the
intermediate geometry),

Very small geometrical details ⇒ Very fine cells near the walls
⇒ Improvement of the time integration (DTS)
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Thank you

for your

attention!!
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