

Application to the gate valve problem

Conclusions and future work 00

10th Symposium on Overset Composite Grids and Solution Technology, NASA Ames Research Center, Moffett Field, California USA

Towards the direct computation of the aerodynamic sound generated by a gate valve in nuclear power plants

<u>F. Daude¹</u>, J. Berland¹, P. Lafon¹, F. Crouzet², C. Bailly^{3,4} & W. D. Henshaw⁵

¹LaMSID - UMR EDF/CNRS 2832 ²EDF R&D, AMA ³LMFA, ECL & UMR CNRS 5509 ⁴Institut Universitaire de France ⁵LLNL

September 21, 2010

A B > A B > A B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B > B
 B >

Motivations	Modeling	and	computational	aspects

- Background
- Context
- 2 Modeling and computational aspects
 - Governing equations
 - Numerical algorithm
- 3 Application to the gate valve problem
 - Simplified valve geometry
 - Computational representation
 - Toward the real geometry ...
- 4 Conclusions and future work
 - Conclusions
 - Future work

э

Motivations	Modeling	and	computational	asp

Conclusions and future work $_{\rm OO}$

- Background
- Context
- 2 Modeling and computational aspects
 - Governing equations
 - Numerical algorithm
- 3 Application to the gate valve problem
 - Simplified valve geometry
 - Computational representation
 - Toward the real geometry ...
- 4 Conclusions and future work
 - Conclusions
 - Future work

э

Motivations ●○	Modeling and computational aspects	Application to the gate valve problem	Conclusions and future work
Background			
Industr	ial problem		

Noise generated in flows by valves in pipe systems of power plants

- Non-linear aeroacoustic interactions in confined flows
- Undesirable high pressure acoustic levels, noxious excitation of structural vibrations ...
- Need of unsteady data for:
 - prediction of noise sources,
 - propagation of the noise generated,
 - understanding of physical phenomena.

Motivations ○●	Modeling 000	and	computational	aspects
Context				

Conclusions and future work $_{\rm OO}$

Direct computation of aerodynamic noise (DNC)

- Computation of the aerodynamic and the acoustic fields in the same simulation (via DNS or LES),
- Need to accurately resolve high-wavenumber fluctuations,
- Use of low-dissipative and low-dispersive schemes (FD, ...).
- \Rightarrow Development of *Code_Safari* (Emmert PhD 2007, Daude *et al.* AIAA Paper 2008):
 - Compressible turbulent flows,
 - Coupling between flow and acoustics,
 - Application to configurations with industrial relevance.

Motivations	Modeling and	computa

Conclusions and future work 00

Motivations

- Background
- Context

2 Modeling and computational aspects

- Governing equations
- Numerical algorithm

3 Application to the gate valve problem

- Simplified valve geometry
- Computational representation
- Toward the real geometry ...

4 Conclusions and future work

- Conclusions
- Future work

э

Motivations Modeling and computational aspects

Application to the gate valve problem

Conclusions and future work 00

Governing equations

3-D compressible unsteady Navier-Stokes equations written in curvilinear coordinates:

$$\partial_t \left(\frac{1}{J} \mathbf{U} \right) + \partial_{\xi} \Big(\mathbf{F}_{\xi} - \mathbf{F}_{\xi}^{\nu} \Big) + \partial_{\eta} \Big(\mathbf{F}_{\eta} - \mathbf{F}_{\eta}^{\nu} \Big) + \partial_{\zeta} \Big(\mathbf{F}_{\zeta} - \mathbf{F}_{\zeta}^{\nu} \Big) = \mathbf{0}$$

- Conservative variables $\mathbf{U} = (\rho, \rho \mathbf{u}, \rho e)^T$,
- J transformation Jacobian $(x, y, z) \rightarrow (\xi, \eta, \zeta)$,
- Perfect gas, Newtonian fluid, Fourier law, Sutherland's law.

Geometrical conservation relations:

$$\partial_{\xi} \Big(\nabla \xi \Big) + \partial_{\eta} \Big(\nabla \eta \Big) + \partial_{\zeta} \Big(\nabla \zeta \Big) = \mathbf{0}$$

• Conservative form for spatial metrics (Thomas & Lombard AIAA J. 1979)

 Motivations
 Modeling and computational aspects

 ○○
 ○●○

Application to the gate valve problem

Conclusions and future work 00

Numerical algorithm

Numerical discretization

- Spatial discretization: optimized centered finite difference schemes (Bogey & Bailly JCP 2004)
- Time integration: explicit Runge-Kutta schemes
- Selective filtering: optimized centered low-pass filters (Bogey & Bailly JCP 2004)
- LES strategy: approach based on relaxation filtering (Bogey & Bailly JFM 2009)

Present numerical method:

- Spectral-like accuracy,
- Limited to Cartesian meshes
 ⇒ Difficulty to tackle complex geometries.

Motivations	Modeling and computational aspects	Application to the gate valve problem	Conclusions and future work
	000		
Numerical alm	a state and		

Multi-domain approach

- Use of overset-grid techniques with high-order interpolation procedure (Delfs AIAA Paper 2001),
- Use of the free library *Overture* developed at Lawrence Livermore Laboratory (Henshaw 1998),

 Communication performed via high-order Lagrangian polynomials (Scott & Sherer JCP 2005, Desquesnes *et al.* JCP 2006):

A D F A B F A B F A B F

Motivations	Modeling	and	computational	aspects

Motivations

- Background
- Context
- 2 Modeling and computational aspects
 - Governing equations
 - Numerical algorithm

3 Application to the gate valve problem

- Simplified valve geometry
- Computational representation
- Toward the real geometry ...
- 4 Conclusions and future work
 - Conclusions
 - Future work

э

Motivations	Modeling	and	computational	aspects

Application to the gate valve problem

Conclusions and future work $_{\rm OO}$

Simplified valve geometry

• Real-life geometry (too complex details to model)

Ability of Code_Safari to reproduce fluid/acoustic couplings ?

• Simple 2-D geometry: ducted cavity model

Application to the gate valve problem

Conclusions and future work 00

Simplified valve geometry

Two physics (two characteristic length scales):

Rossiter's mode $\operatorname{St}_{R} = \frac{n_{R} - \alpha}{M_{0} + 1/\kappa} \qquad \operatorname{St}_{d} = \frac{n_{d}L}{2HM_{0}}$

Lock-in phenomena: coupling of Rossiter's and duct modes;

$$\operatorname{St}_R \approx \operatorname{St}_d$$

Motivations Modeling and computational aspects

Application to the gate valve problem

Conclusions and future work 00

edf

RØD

Simplified valve geometry

Case configuration retained for studies

- Partially covered,
- *h* = 0.02 m,
- W = 0.2 h
- $M_0 = 0.18$,
- $Re_H = 5.6 \times 10^5$,
- Exp. obv. at $M_0 = 0.18$: 2RM couples with 1DM

- Upstream boundary layer:
 - Mean flow profile:

$$\frac{u_b(y)}{U_0} = \left(\frac{y}{\delta}\right)^{1/n}$$
 with $\delta =$

th $\delta = 8.8 \text{ mm}$ and n = 8.5

- $38 imes 10^6$ points,
- Computed by $N_{\text{procs}} = 206$ processors,
- $\Delta y^+ = 11$ of inflow profile,
- No turbulent fluctuations added,
- Periodic boundary conditions in spanwise direction,
- Slip conditions on the upper duct wall.

(日) (同) (日) (日)

Motivations 00	Modeling and computational aspects	Application to the gate valve problem	Conclusions and future work
Computational i	representation		
Numeri	cal results		

Two physics: turbulence in the cavity & acoustic waves in the duct

Spanwise average vorticity modulus

Pressure fluctuations

2nd Rossiter mode and 1st Duct mode dominant

- Lock-in phenomena well retrieved,
- overset-grid approach: to adapt the cell size to the dynamics investigated.

Motivations Modeling and computational aspects 00 000 Conclusions and future work $_{\rm OO}$

edf

RØD

Toward the real geometry ...

Introduction of an intermediate geometry:

Mesh strategy:

Motivations	Modeling	and	computational	aspects

Application to the gate valve problem $\circ \circ \circ \circ \circ \circ \circ \bullet$

Conclusions and future work $_{\rm OO}$

Toward the real geometry ...

Computational domain:

Preliminary results: acoustic pressure pulse

• overset-grid approach: to realize grids around realistic geometries

э

Motivations	Modeling	and	computational	aspects

Motivations

- Background
- Context
- 2 Modeling and computational aspects
 - Governing equations
 - Numerical algorithm

3 Application to the gate valve problem

- Simplified valve geometry
- Computational representation
- Toward the real geometry ...

4 Conclusions and future work

- Conclusions
- Future work

э

Motivations 00	Modeling and computational aspects	Application to the gate valve problem	Conclusions and future work ●○
Conclusions			

- High-order finite difference schemes on overset grids suitable for compressible LES on CAA applications:
 - Large-Eddy Simulation of (simple) confined cavity flow,
 - Prediction of flow/acoustics coupling.

- Overset-grid strategy suitable:
 - to preserve the high-accuracy of FD schemes on non-trivial bodies,
 - to adapt the cell size to the dynamics investigated,
 - to realize grids around realistic geometries.

Motivations 00	Modeling and computational aspects	Application to the gate valve problem	Conclusions and future work ○●
Future work			

• To perform the LES of the flow in the intermediate geometry,

- To deal with the real-life geometry:
 - CAO details "suitable" for CFD computations (general problem for industrial components)
 - Computational domain (based on the strategy used for the intermediate geometry),
 - Very small geometrical details \Rightarrow Very fine cells near the walls \Rightarrow Improvement of the time integration (DTS)

Motivations	Modeling	and	computational	aspects

Application to the gate valve problem

Conclusions and future work $_{\rm OO}$

Thank you

for your attention!!

