Chimera Grid Method for Incompressible Flows and its

Applications in Actual Problems

H. S. Tang

Dept. of Civil Eng., City College City Univ. of New York

Collaborators: C. H. Lee, T. Zhou, Sotiropoulos, J. Paik, X. G. Wu

10th Symposium on Overset Composite Grids and Solution Technology NASA Ames Research Center, CA Sept. 20-23, 2010

Outline

I. Introduction

- II. Grid interface algorithms
- III. Incompressible flows
- III. Environmental flows
- IV. Coastal ocean flows
- V. Concluding remarks

I. Introduction

Domain decomposition and Chimera grids

Advantages

- Overcome difficulty in mesh generation
- Utilize parallel computation approaches
- Attack multi-scale and multi-physics problems

Grid/Model Interface Treatment --- Crucial Issue

- Conservative algorithms difficult to realize, unstable, inconsistency, ...
- Non-conservative algorithms easy to realize, wrong solution, numerical oscillation, ….

Conservative or non-conservative treatment?

Physical solution obtained with bi-linear interpolation at grid interface

It is proven that numerical solution converges to a weak solution under certain conditions if a non-conservative interface algorithm is used

FIG. 4.3. Computed results of flowfield with a shock moving to the right and passing through a square grid. $\rho_l = 3.948$, $u_l = 4.359$, $p_l = 5.005$, $\rho_r = 1.4$, $u_r = 3$, $p_r = 1$, T = 0.13. Here subscript l and r indicate left and right side, respectively. (4.3) is adopted at the interface nodes, a scheme based on TVNI [18] is used within the each grid, and CFL = 0.95. (a) Mesh arrangement. $G_A: 24 \times 24$, $G_B: 18 \times 18$. (b) Pressure contours for (a), $||S_{2\Delta}(0,T)||_{\infty} = 2.4 \times 10^{-3}$. (c) Mesh arrangement. $G_A: 93 \times 93$, $G_B: 69 \times 69$. (d) Pressure contours for (c), $||S_{2\Delta}(0,T)||_{\infty} = 7.1 \times 10^{-5}$.

Conservative or non-conservative treatment?

FIG. 4.4. A steady shock is located at the interface. Initially when x < 0, $\rho = 0.25$, u = 4, p = 0.2857142, and when x > 0, $\rho = 1$, u = 1, p = 3.2857142. T = 1. Interface scheme is (2.4). The Lax-Wendroff scheme is adopted in both subdomains A and B, $\Delta x_A = 0.025$, $\Delta x_B = 0.05$, CFL = 0.95. (a) Pressure solutions. Dots—numerical results, solid line—exact solution. (b) History of conservation error $||S_{1\Delta}(0,t)||_{\infty}$.

Non-physical solution obtained with linear interpolation

A mass conservation algorithm for incompressible flow

Implicit interface conditions implemented by Schwarz alternative iteration (1869)

An conservative interpolation

$$\sum_j \tilde{F}^1_{3/2,j}(U^A_p,U^A_q)\Delta\Gamma'_j = \sum_j \tilde{F}^1_{3/2,j}(U^B_p,U^B_q)\Delta\Gamma'_j,$$

Algorithm 1

$$U_{1,j,k}^{\mathbf{A}} = J_{1,j,k} \left(\left(\frac{U^{\mathbf{I}}}{J} \right)_{1,j,k} + \left(\frac{U^{\mathbf{I}}}{J} \right)_{2,j,k} - \left(\frac{U^{\mathbf{A}}}{J} \right)_{2,j,k} \right),$$

$$V_{1,i,k}^{\mathbf{A}} = V_{1,i,k}^{\mathbf{I}},$$

 $W_{1,j,k}^{A} = W_{1,j,k}^{I},$ $p_{1,j,k}^{A} = p_{1,j,k}^{I},$

Algorithm 2

$$\begin{split} u_{1,j,k}^{\mathbf{A}} &= u_{1,j,k}^{\mathbf{I}} + u_{2,j,k}^{\mathbf{I}} - u_{2,j,k}^{\mathbf{A}}, \\ v_{1,j,k}^{\mathbf{A}} &= v_{1,j,k}^{\mathbf{I}} + v_{2,j,k}^{\mathbf{I}} - v_{2,j,k}^{\mathbf{A}}, \\ w_{1,j,k}^{\mathbf{A}} &= w_{1,j,k}^{\mathbf{I}} + w_{2,j,k}^{\mathbf{I}} - w_{2,j,k}^{\mathbf{A}}, \\ p_{1,j,k}^{\mathbf{A}} &= p_{1,j,k}^{\mathbf{I}}. \end{split}$$

Algorithm 1 and 2:

2nd-order accurate in conservation of mass and momentum fluxes

Incompressible – numerical experiment

Incompressible – numerical experiment

III Incompressible Flow

Flow past cylinder – flow field

III Incompressible Flow

Flow past cylinder --- comparisons

St=0.152 Our result Mittal, Phys. Fluids, v13, 2001 =0.145 =0.141 - 0.161 Norberg, F. Fluid Mech., v258, 1994

St=0.195 **Our result** =0.190 Mittal, Phys. Fluids, v13, 2001

III Incompressible Flow

Flow past wall-mounted structures

IV Environmental Flow

Thermal plume in natural river – flow parameter

bathymetry

Ambient velocity: 0.5 m/s Effluent velocity: 2 -- 4 m/s Port diameters: 0.1—0.3 m

Close-up view of diffuser

IV Environmental Flow

Thermal plume in natural river – Chimera overset grids

IV Environmental Flows

Thermal plume in natural river – solutions

3D view of plumes (temperature iso-surfaces)

Particle tracking (movie)

IV Environmental Flows

Thermal plume in natural river – predicted jets

Time histories of particle temperature

Background and models

Large scales -- Computational Geophysics Dynamics (GFD): O(10)km - O (10,000) km, O(1)hr - O (1) month

> Note: Computational Fluid Dynamics (CFD): Smaller scales: O(10) cm - O(10) kmO(1) ms - O(1) hr

Individual phenomena: circulation, wave, etc.

CFD model --- Unsteady, 3D, incompressible RANS, curvilinear coordinates, structured grids, finite volume method

FVCOM --- Unsteady, 3D, incompressible GFD equations, triangular mesh in horizontal direction, sigma coordinates in vertical direction, finite volume method

Strategies -- examples

Model coupling

Flow domain decomposition --- with overlap subdomains

Coupling between CFD and internal mode of FVCOM --- exchange of solution for u, v, w, p/ η

Chimera overset grids and Schwarz alternative iteration

Second-order accurate interpolation at model interface

Discharge into channel --- mesh

Mesh. Structured mesh – CFD unstructured mesh – FVCOM

Mesh: coupling – FVCOM: 115,000 nodes each layer,11 layers CFD -- 220,000 nodes

Mesh around the diffuser

Discharge into channel --- results

Discharge into channel --- results

Discharge into coastal flow --- mesh

FVCOM mesh and CFD location

CFD mesh (blue)

New York/New Jersey coast region and FVCOM mesh and CFD location

Discharge into coastal flow --- solutions

Solution for thermal discharge. Top – velocity field, bottom – 3D thermal plume and water surface vectors, left – flood tide, right – ebb tide.

Discharge into coastal flow --- solution movie

Animation of the temperature iso-surface under action of tides

Concluding remarks

Conclusion and Future work

Overset grid techniques are powerful in resolving multi-scale and multi-physics problems
 A systematic investigation on accurate and stable model interface algorithms is necessary
 Challenges: coupling between different sets of PDE and flow models

References

Wu and Tang, 9th Int. Conf. Hydro. Shanghai, China. Accepted. Oct. 11-15, 2010.
Tang, Paik, Sotiropoulos, and Khangaokar. J. Hydr. Eng, 2008.
Tang, Computers & Fluids., 2006.
Chen, Liu, and Beardsley, J. Atm. & Oceanic Tech., 2003.
Tang, Jones, and Sotiropoulos, J. Comput. Phys., 2003.
Tang and Zhou, SIAM J. Numer. Anal., 1999.

