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l. Introduction

Domain decomposition and Chimera grids

Advantages
n Overcome difficulty in mesh generation
m Utilize parallel computation approaches

m Attack multi-scale and multi-physics problems

Grid/Model Interface Treatment --- Crucial Issue

n Conservative algorithms — difficult to realize,
unstable, inconsistency, ...
n Non-conservative algorithms — easy to realize,

wrong solution, numerical oscillation, ....



Il. Grid Interface Algorithm

Conservative or non-conservative treatment?

Physical solution obtained
with bi-linear
interpolation at grid
interface

It is proven that numerical
solution converges to
a weak solution under
certain conditions if a
non-conservative
interface algorithm is
used

Fic. 4.3. Computed results of flowfield with a shock moving to the right and passing through
a square grid. p;p = 3.948, w3 = 4.359, p; = 5.005, p, =14, v, =3, pr =1, T = 0.13. Here
subscript I and r indicate left and right side, respectively. (4.3) is adopted at the interface nodes, a
scheme based on TVNI [18] is used within the each grid, and CFL = 0.95. (a) Mesh arrangement.
Ga: 24 x24, Gg: 18 x 18. (b) Pressure contours for (a), |[Soa(0,T)|ec = 2.4 X 1073, (c) Mesh

arrangement. Ga: 93 x93, Gpg: 69 x69. (d) Pressure contours for (c), |[Soa(0,T)||eo = 7.1x 1072,



Il. Grid Interface Algorithm

Conservative or non-conservative treatment?
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Fic. 4.4. A steady shock s located at the interface. Initially when = < 0, p = 0.25, u = 4,
p = 0.2857142, and when = > 0, p =1, u = 1, p = 3.2857142. T = 1. Interface scheme 1s (2.4).
The Lar—Wendroff scheme s adopted in both subdomains A and B, Azx4 = 0.025, Azpg = 0.05,
CFL = 095. (a) Pressure solutions. Dots—numerical results, solid line—exact solution. (b)
History of conservation error ||S1a (0, %) cc.

Non-physical solution obtained with linear interpolation



Il. Grid Interface Algorithm

A mass conservation algorithm for incompressible flow

Algorithm 1 |
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Implicit interface conditions vy ‘i_.l R S
implemented by Schwarz A _a
alternative iteration (1869) Prix = Prig
An conservative interpolation Algorithm 1 and 2:

2nd-order accurate in conservation of
ZF;, (UA, UAAT, = Z 1o, (UB, UB)AT! mass and momentum fluxes



Il. Grid Interface Algorithm

Incompressible — numerical experiment
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Il. Grid Interface Algorithm

Incompressible — numerical experiment
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lll Incompressible Flow

Flow East czlinder — flow field

x-vorticity

Configuration
and meshes

Re=300

y-vorticity



lll Incompressible Flow

Flow East czlinder --- cOMparisons

Re=100 Re=300
St=0.152 Our result

=0.145 Mittal, Phys. Fluids, v13, 2001

=0.141 - 0.161 Norberg, F. Fluid Mech., v258, 1994

St=0.195 Our result
=0.190 Mittal, Phys. Fluids, v13, 2001



lll Incompressible Flow

mounted structures

Flow past wall

2 iso-surface)

3D vortex structure (




IV Environmental Flow

Thermal plume in natural river — flow parameter

Depth (m)
0 River flow

Diffuser o
AN River flow

bathymetry

Ambient velocity: 0.5 m/s
Effluent velocity: 2 -- 4 m/s
Port diameters: 0.1—0.3 m

Close-up view of diffuser



IV Environmental Flow

«<— Background mesh

for river and diffusers
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Thermal plume in natural river — Chimera overset grids
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IV Environmental Flows

Thermal plume in natural river — predicted jets

Effluent velocity at port mouths
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V Coastal Ocean Flows

Background and models

m Large scales -- Computational Geophysics Dynamics (GFD):
O(10)km - O (10,000) km,
O(1)hr = O (1) month

Note: Computational Fluid Dynamics (CFD):
Smaller scales: O(10) cm - O (10) km
O(1) ms—=0 (1) hr
Individual phenomena: circulation, wave, etc.

m CFD model --- Unsteady, 3D, incompressible RANS, curvilinear
coordinates, structured grids, finite volume method

FVCOM --- Unsteady, 3D, incompressible GFD equations,

triangular mesh in horizontal direction, sigma coordinates
in vertical direction, finite volume method



V Coastal Ocean Flows

Strategies -- examples

Discharge in ocean

1) small-scale initial plume of oil spill _™**"=2
2) large scale-floating dispersion arisioispi
P et | Farfield
\ D'r§°2‘;“? | oilspil
Coast process g

1) surge bore
2) underwater vortex flow

Water surface Storm surge

—_—  —

land

Vortrerx shedding

-

undersea obstacle



V Coastal Ocean Flows

Model coupling
Flow domain decomposition Chimera overset grids and
--- with overlap subdomains Schwarz alternative iteration

Coupling between CFD and internal ~ Second-order accurate
mode of FVCOM --- exchange of interpolation at model
solution for u, v, w, p/7 interface



V Coastal Ocean Flows

into channel --- mesh

Discharge

Mesh:

layer,11 layers

coupling — FVCOM: 115,000 nodes each
-- 220,000 nodes

CFD

Channel and diffuser
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Mesh around the diffuser

Mesh. Structured mesh — CFD
unstructured mesh — FVCOM



V Coastal Ocean Flows

Discharge Into channel --- results

FVCOM/CFD coupling CFD



V Coastal Ocean Flows

Discharge into channel --- results

Total velocity
(m/s)
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FVCOM/CFD coupling CFD




V Coastal Ocean Flows

Discharge into coastal flow --- mesh

Discharge

Pennsylvania

FVCOM mesh and CFD location CFD mesh (blue)

New York/New Jersey coast region and FVCOM mesh and CFD location



V Coastal Ocean Flows

Discharge into coastal flow --- solutions

Total velocity (m/s)
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Solution for thermal discharge. Top — velocity field, bottom — 3D thermal
plume and water surface vectors, left — flood tide, right — ebb tide.



V Coastal Ocean Flows

Discharge into coastal flow --- solution movie

Animation of the temperature iso-surface under action of tides



Concluding remarks

Conclusion and Future work

1) Overset grid techniques are powerful in resolving multi-scale and multi-physics problems
2) A systematic investigation on accurate and stable model interface algorithms is necessary
3) Challenges: coupling between different sets of PDE and flow models
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