
1 

A New Solution Adaption Capability for the 
OVERFLOW CFD Code 

Pieter G. Buning 
NASA Langley Research Center, Hampton, VA 

10th Symposium on Overset Composite Grid and Solution Technology 

September 20-23, 2010, Moffett Field, CA 



2 

Goals 

•  Add a solution-adaptive grid 
capability for off-body (Cartesian) 
grids 

•  Make it an integral part of the 
OVERFLOW off-body grid 
generation 

•  Based on adaptive grid capability in 
OVERFLOW-D*, but able to create 
finer grid levels than “Level 1” 

•  Efficient enough for time-accurate 
moving grids! 

* see Meakin, AIAA-95-1722 and AIAA-97-1858 



3 

Outline 

•  (Goals) 
•  Approach 
•  Sensor function and marking 

•  Grid generation and connectivity 

•  Interpolation onto new grid system 
•  Sample results 
•  Conclusions, issues, and future work 



4 

Approach 

•  Use as much of the current off-body grid generation mechanics 
     as possible 
•  Where we have refinement grids, either 

–  Blank out coarser-level grids, or 

–  Make all grids abutting (with added overset boundaries)  ‏
•  Use feature-based adaption for now 

–  Easier to implement than adjoint, certainly for unsteady problems 
–  Appropriate for vortex-dominated problems like rotorcraft 



5 

Approach 

Terminology: 
•  Grids are either “near-body” (user-supplied) or “off-body” (Cartesian, 

automatically generated) 
•  “Level 1” off-body grids are the finest off-body grids (before 

adaption), with a user-specified grid spacing 
•  Level 2, 3, etc., are coarser by factors of 2 
•  Refinement grids are labelled Level -1, -2, etc., and are finer by 

factors of 2 
Further, 
•  Near-body grids are always surrounded by Level 1 grids 
•  Geometry cuts holes in Level 1 and finer off-body grids 
•  Neighboring off-body grids differ by only one level 



6 

Approach 

Controls: 
•  NREFINE – maximum number of refinement levels 
•  ETYPE – sensor function (undivided 2nd difference, vorticity, 

undivided vorticity...) 
•  EREFINE – sensor value above which we mark for refinement 
•  ECOARSEN – sensor value below which we mark for coarsening 

We would prefer to control: 
•  Accuracy (via error estimate) 
•  Cost (number of grid points) 



7 

Sensor Function and Marking 

•  Undivided 2nd difference of (elements of) Q=(ρ, ρu, ρv, ρw, ρe0) 
–  2nd difference of q times Δx2; or 
–  Difference between qi and average of (qi-1, qi+1); or 
–  Interpolation error between current grid and 2x coarser grid; or 
–  Truncation error estimate 

•  Actually computed as 
(normalized and squared; 
  take max over Q variables) 

•  This function 
–  Is non-dimensional 
–  Is independent of grid units 
–  Gets smaller as the grid is refined (where Q is smooth) 



8 

Sensor Function and Marking 

•  At each grid point 
–  If the sensor function value exceeds a refinement tolerance, mark for 

grid refinement; 
–  If it falls below a coarsening tolerance, mark for grid coarsening 

•  Within an 8x8x8 grid cube, or “box” 
–  If any point votes for refinement, the box is marked for refinement; 
–  If all points vote for coarsening, the box is marked for coarsening 

•  Regions can only coarsen or refine by one level at a time 
•  Only level 2 and finer grids are marked 



9 

Sensor Function and Marking 

Sensor function 
(blue-10-10; magenta-10-3) 

Marker function 
(blue-coarsen; green-maintain; magenta-refine) 



10 

Grid Generation 

•  Start from finest level 
•  For each grid level (up through level 1): 

1.  Mark regions from previous adapt cycle refinement boxes 
2.  Unmark regions from current adapt cycle coarsen boxes 
3.  Mark regions from current adapt cycle refinement boxes 
4.  Mark near-body grid proximity boxes (level 1 only) 
5.  Mark regions from user-specified boxes 

•  For grid level 2 and up: 
1.  Fill buffer around clusters of previous-level grids 
2.  Clusters become rectangular 
3.  Merge neighboring clusters 



11 

Grid Connectivity 

•  Hole cutting 
–  All refinement grids get cut by geometry 

(just like level 1) 
•  Blanking for refinement 

–  Next-finer grid level explicitly blanks out 
regions in current level 

•  Connectivity 
–  Refinement grids can have 

•  Hole boundary points from geometry cuts 
•  Hole boundary points from finer 

refinement grids 
•  Outer boundary points 

Sample level (-1) grid blanking 
and interpolation stencils 



12 

Solution Interpolation onto Adapted Grids 

Goals: 
•  Process must be MPI-parallel, and include (re)load-balancing 
•  Near-body grids (and auto splitting) do not change, so involve no 

interpolation (but may move to different MPI groups) 
•  Interpolation must be performed in-core 
Process: 
•  Create new off-body grid system 
•  Create a new distribution of near-body and off-body grids 
•  MPI groups exchange near-body grids and solutions (no new splitting) 

–  This is parallelized to the extent that independent groups can exchange grids independently 

•  Off-body grid solution interpolation: 
–  All MPI groups loop through old off-body grids, coarse-to-fine 
–  Use bounding box to find which new grids touch this old grid 
–  Owner uses non-blocking MPI sends to relevant new group(s) 
–  New groups use blocking MPI receives, then interpolate onto new grid(s) 



13 

Solution Interpolation onto Adapted Grids 

Original OVERFLOW-D method wrote old solutions to disk, read back 
in to interpolate onto new grids 

+ Avoided the need for having old and new solutions in memory at the same 
time 
+ Not a limitation for steady-state (adapting less than 10 times) 
+ Not as much of a limit for “regular” problems, where less than 30% of the total 
grid points are in the off-body grids 

– Big problem for rotorcraft problems, where more than 90% of the points are in 
the off-body grids, and problem is unsteady 
– For a sample UH-60 test case, adaption took 50% of the total time when using 
disk, compared to 3% when using memory 



14 

Sample Results – Supersonic Airfoil 

•  Steady flow, easy adaption 
•  Converge first, then adapt every 10 steps for 100 steps 
•  Nice adaption behavior, though lift chatters and residual hangs up 

(even after adaption is turned off) 



15 

Sample Results – 2D Jet in Supersonic 
Cross-Flow 

Sonic H2 jet (pressure ratio 100) into Mach 4 N2 free-stream 
•  Developing shock structure and contact surface 
•  Again, lots to adapt to 
•  Wall grid has small normal extent, stream-wise spacing to match finest expected off-body adaption 



16 

Sample Results – 2D Jet in Supersonic 
Cross-Flow 

Two different levels of refinement: 
•  NREFINE=0 or 2 (minimum spacing of Djet/5 or Djet/20) 
•  Results look fairly similar, but added detail with finer adaption 

136 grids, 245K points 944 grids, 1269K points 



17 

Sample Results – Helicopter Rotor 

•  Coarse-grid UH-60 test case from Mark Potsdam (Army AFDD) 
–  Main blade grid is 125x82x33 (101 points on airfoil, 33 points in surface-

normal direction, 82 span-wise stations) 
–  Finest (level 1) off-body spacing is 20% of blade chord 



18 

Sample Results – Helicopter Rotor 

•  Adapted grid system after one revolution 
–  Two levels of refinement 
–  Adaption performed every 10 steps (2 deg rotation) 
–  Much better resolution of tip vortices 
–  Grid size increases from 5M points to 67M points 



19 

Sample Results – Helicopter Rotor 

•  Development of level (-2) grids at 90, 180, 270, 360 deg rotation 



20 

Sample Results – Helicopter Rotor 

•  Ending with 1871 grids, 67M points 
•  Average 68 sec/step (20 sub-iterations/step), using 128 processors 

–  81% flow solver 
–    9% idle 
–    6% Chimera communication 
–    2% overset grid connectivity 
–    2% grid adaption 

•  Breakdown of adaption process 
–  80% off-body solution interpolation 
–  15% off-body grid generation 
–  0.5% sensor function calculation 



21 

Grid Statistics 

•  2D jet in supersonic 
cross-flow 

•  UH-60 rotor 

Grid type # grids % points % blanked 
Near-body 1 5 0 
Level (-2) 162 50 1 
Level (-1) 86 26 10 
Level 1 33 12 11 
Level 2 40 6 0 
… … … … 
total 342 100 4 

Grid type # grids % points % blanked 
Near-body 12 3 0 
Level (-2) 1153 66 2 
Level (-1) 505 23 24 
Level 1 79 6 28 
Level 2 99 2 0 
… … … … 
total 1871 100 9 



22 

Conclusions 

•  Solution adaption process has been implemented in OVERFLOW 
–  Allows off-body refinement grids that are finer than Level 1 
–  Grid adaption is an integral part of the code 
–  Adaption is efficient enough for time-accurate solutions 
–  Grid blanking for refinement grids is significant but not overwhelming 
–  Adaption process is both MPI- and OpenMP-parallel 



23 

Issues 

•  How to control the number of grid points? 
–  Limit for run time and memory usage 

•  How often to adapt? 
–  Make sure adapted region covers moving features 

•  Picking near-body grid resolution 
–  Very fine means lots of points 
–  Too coarse means we lose the benefit of adaption 
–  We need adaption here too! 



24 

Issues 

•  Physics or numerical artifacts? 
–  Effect of time-step and sub-

iteration count on time 
accuracy when refining grids 



25 

Future Work 

•  Near-body grid adaption 
–  Needed to maintain similar resolution of features, and similar spacing in overlap 

regions 
–  One issue is maintaining smooth geometry definition 

•  Methods to control number of points 
–  c.f. M.J. Aftosmis and M.J. Berger, “Multilevel Error Estimation and Adaptive h-

Refinement for Cartesian Meshes with Embedded Boundaries,” AIAA-2002-0863, 
Jan. 2002 

•  Look at other sensor functions (e.g., vorticity, adjoint, …) 
–  c.f. S.J. Kamkar, A.M. Wissink, A. Jameson, and V. Sankaran, “Feature-Driven 

Cartesian Adaptive Mesh Refinement in the Helios Code,” AIAA-2010-0171, Jan. 
2010 

–  c.f. M. Nemec and M.J. Aftosmis, “Adjoint-Based Adaptive Mesh Refinement for 
Complex Geometries,” AIAA-2008-0725, Jan. 2008 


