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RDECOM )) Motivation

e Computational Fluid Dynamics (CFD) has developed into an
effective tool for rotorcraft aeromechanics
— Thrust, power, figure of merit (hover) resolution to within 2-3% of experiment
— Commonly used for aerodynamics in high-fidelity CFD/CSD analysis

e However, CFD wake predictions remain poor
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”"E"@ Wake Approaches Used T-, T

STREHIETH THROUGH TECHNOLOGY

o Vorticity Embedding | i e Ses 50
. . . — T ay——
¢ Vorticity Confinement B ;;
= e R
e Vorticity Transport ExS=ZRXo3E 1 . >
Lagrangian/Eulerian Vortici fi .
Vorticity Embedding orticity Con 'gtee%gg:f Vorticity Transport Model
Caradonna CDI - Brown

Useful for fast-turnaround “desktop CFD” or flight simulator applications

e CFD with very dense background grids ______Overflow

— Fine-mesh CFD today - 10% blade chord resolution, T
1 point across vortex core

— 10-20 points across core required
4 refinements = 16 points across core

— Problem size grows by 4096X

With computing power growing at a rate of 1000X/ NR gy SEttaass |
decade (the current trend) it will be 40 years before INNR NN NN RSt
calculations of this size become routine. — -
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m—’fb‘@ Adaptive Mesh Refinement

STRENGTH THEDUtH TECHNOLOGY

e A number of researchers have investigated CFD-based adaptlve

mesh refinement to resolve rotor wakes
— Strawn, Barth, AHS J. 1993
— Meakin, AIAA CFD, 2001
— Kang, Kwon, AHS J. 2002
— Park, Kwon, AHS J. 2004
— Dietz et al, AHS J. 2004
— Potsdam, Mavriplis, AIAA Aero. 2009
— Holst, Pulliam, AHS SF Spec. 2010

e Dynamic time dependent approach
— Block structured AMR - Berger, Colella

— Technique developed in the 80s-90s for
unsteady shock physics applications

R. Nourgaliev - UCSB

AIA"JHIZHWM
IV NV

rotor

wake

Unstructured AMR
Strawn, Barth, 1993

Techniques drawn mainly from
steady fixed-wing applications
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RDECOM ) Approach AmEr

STRENGTH THROUGH TECHNOLOGY
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Unstructured “near-body” Cartesian “off-body” Implicit Hole Cutting
— near-wall viscous flow — Resolve wake — Detects overset grid with
— Complex geometries — High order highest resolution
— NSU3D — Solution adaptive — Parallel (MPI)
— SAMRAI, ARC3D — PUNDIT
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BBEG@ Block Structured AMR

Solution-based Refinement sﬁﬁﬁsm THR!DLI\GH—TE(HLHEID-G;

Coarse level Intermediate Fine

1. “Tag” cells containing feature

Hierarchy of

2. Cluster tagged cells into blocks
nested levels

3. Use blocks to create finer level

=

—> Repeat ———

- -

ARC3D solver applied on each block

e 31-O RK time integration e Minimal overhead
e High-order spatial ops e Parallel mesh generation
O 6"-O central diff e Load by distributing blocks

o 5th-O diss
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RDECOM ) Geometry-based Refinement ‘ff-w"ﬁ

STRENGTH THROUGH TECHNOLOGY

Geometry refinement necessary to ensure consistent resolution
between near and off-body grids

|5}
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5
Near-body Inter-grid tag refine
mesh boundary
points

e Adapt Cartesian grids to match spacing of near-body grid
e Performed at each time step in moving-mesh simulations
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RDECOM ) Helios Code

P ape prap
STRENGTH THROUGH TECHNOLOGY

e Aero CFD components e Structural dynamics components

— Near-body unstructured: NSU3D — Structures & trim: RCAS
_ Off_body Cartesian: SAMARC — Fluid structure interface: FSI
— Domain connectivity: PUNDIT — Mesh motion: MMM

NSU3D PUNDIT SAMARC RCAS

Near-body Domain Off-body Structural

solver connectivity solver Dynamics/Trim

interfaces

Shared grid and solution data

Python controller scripts

Software Integration Framework (SIF)

10

andrew.m.wissink@us.army.mil



m,fg@ Example Application

Flow Over Sphere STENGTH THROLGHTECHAOLOEY
iqinal h adaptive overset
Onginal mesh  subset  Cartesian mesh solution

e Flow conditions
— Re=1000
— Laminar (no turb model)
— Expect unsteady shedding

Dual-mesh adaptive

Fu”y unstructured Unstructured near-body / Cartesian off-body

5\

s’ 4

v

No shedding

Expected shedding behavior

1"
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Example Application

Flow Over Sphere (cont)

.

STREHETH THEDUGH TECHNOLOGY

Re=1000

Fully
unstructured

Dual Mesh

Unstructured with
adaptive Cartesian
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RDECOM Results -

A SAEERE.

3D NACAOO015 Wi ng SRENGTH THRDUGATECHNDLOGY

Meshes

M _=0.1235, o, =12°

e Experimental results
— McAlister et al
— Tip vortex measurements
e Computational model
— Re = 1.5 million
— Spalart-Allmaras turb model

Dual mesh adaptive
Unstructured-Cartesian

Wake

vorticity
iso-surface

Fully unstructured Dual mesh adaptive
14
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IGH TECHNOLOGY

Results
ST&E;IETH THE.D

RDECOM
| NACAOO015 Comparison with Experiment
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npECOM) Results r‘fg:

AV-8B Aircraft STRENGTH THanu\GH'TE(HHBm_Gf

o Aft fuselagel/tail fatigue cracks
— Tail buffet from shed vortices
— Experienced in high AOA flight

Configuration analyzed

extensively using
traditional unstructured
grid methods
’A/ N. Hariharan

Investigating application
of dual mesh adaptive
approach

e Further details in Hariharan et al (AIAA-2010-1234)

16
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Results

o
ANERNES

AV-8B traili ng vortices STRENGTH THROUGH TECHNOLOGY

Q-criterion

Q-criterion

NSU3D

Helios
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RBEG@ Results ‘iz;n. ]_ ..'l!

TRAM Rotor STRENGTH manu\uﬂ'ﬁtﬂuﬁm_ﬁf

e Tilt Rotor Aeroacoustics Model (TRAM)

— Quarter-scale model V-22 Osprey rotor/
nacelle

— Tested in DNW-LLF facility

e Computational conditions:
— Rigid blade, 14 deg collective
- M,;,=0.625, Re;,;=2.1M
— Spalart-Allmaras turbulence model

18
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RDEG@

Results
TRAM Baseline

Fully unstructured

Dual mesh adaptive

# Points Solution time Figure of merit
Experiment - - 0.779
Fully unstructured SM *11.1 hrs 0.694 (-11%)
Dual mesh adaptive 56M *29.8 hrs 0.739 (-5%)

—:-\JQ‘
- - -
!II". 1 \'“ — L~

STRENGTH THROUGH TECHNOLOGY

*64 core
Linux
cluster
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roEcom)  Near-body Refinement Important Sy

STRENGTH THEDUtH TECHNOLOGY

Baseline
2.8M
Refinement applied around tip and in the vicinity of
first tip vortex
Refined
9.4M

=P FM ~1% variation

20
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nnfc@ Results:

\

TRAM Refi ned ST&E&ETH THEDUiSH TE(HIHD-LIIJLG;

step = 50000

Time (hours) # points
e 50,000 total steps
’ Near-body solver 18.23 (43% 9.4M
e Steady near-body/Time y SO (43%)
Accurate off-body Off-body solver 23.46 (55%) 110.2M
o Adapt every 100 steps | Adaptive overhead 1.02 (2%) -
e 128 core linux cluster
Total 42.71 hours 119.6M
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BBEG@ Results
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m)ﬂ:@

Standalone
unstructured

Computed CFD wake

approaching observed...

further validation needed

23

Wake summary STRENGTH THROUGH TECHNOLOGY

Baseline Refined
dual mesh dual mesh
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RDECOM ) Helios Status & Plans

sl i )
STRENGTH THROUGH TECHNOLOGY

e Helios 1.0 (Whitney) released Feb 2010 to selected beta testers in

government and industry .
oArmy AFDD, AED, ARL 5.
DN avy N AV AI R STRE*B[HTHEl]I_IIIF:Ier.'HNEIILﬂ.ET
oBell Helicopter

. : . ¢ Sikorsky
OBoeing Philadelphia, Mesa A Unied Tochrologies Campary

0Sikorsky/UTRC

e Helios 2.0 (Shasta) scheduled release Jan 2011
nOff-body AMR with feature detection and error estimation

ORotor + fuselage
OGeneralized CSD interfaces — support both CAMRAD & RCAS

e Helios 3.0 (Rainier) scheduled release Jan 2012
oStrand solver
OScalable dynamics and trim module

25
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Automated Wake-based Refinement

RDECOM =8
‘) v2.0 Capability ANMRRIEC

STRENGTH THEDUiSH TECHNOLOGY

e Non-dimensional feature detection algorithms
— Detects vortical flow regions without tuning
— Finds features of differing magnitude

2

e e

Refine to vorticity magnitude Non-dimensional algorithms

e Error-based refinement termination
— Error computed between coarse/fine grid levels (Richardson extrapolation)
— Refinement terminated when local error drops below threshold

Lamb Vortex ] - error

" f\/\/\/\/\/\e coarse

0.008

0.006 = Level 2

L, Emor

0.004

# 3 HE i <— med
periodic ' <— fine

0 80 100

Kamkar
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nnf"@ Near-body “Strand” solver -*‘t“—

A SAEERE.

v3.0 Capability

STRENGTH THROUGH TECHNOLOGY

EEEEEEEEEEE . .
SRSASRESNZRS * Automatic volume grid
% Off-body .
o Cartesian AMR generation from surface
¥ tessellation

 Fits well in Helios near-off
body grid paradigm

Strand pointing

AR unit) vector
Surf Tessellation (unit)
Triangles/quadralaterals Kot b dy (xp, yp! zp)
Strand/prismatic C|Ip
Z index
Fol-

Meakin et al - AIAA-2007-3834 “On Strand Grids for Complex Flows”

Wissink et al — AIAA-2009-3792 “Validation of the Strand Grid Approach”

Katz et al — AIAA-2010-4934 “Application of Strand Meshes to Complex
Aerodynamic flowfields”

Katz




RDECOM) Parallel Dynamics & Trim -*‘E:

AMBNER

v3.0 Capabili ty STRENGTH THROUGH TECAOLOGY

« Structural dynamics & trim conditions greatly impact accuracy in
rotary-wing simulations

 Aerodynamics calculation much higher fidelity than structural
dynamics

— Navier-Stokes CFD on parallel HPC computer systems
— Beam-model CSD on single processor

* Pursuing three-dimensional rotor dynamics modeling
— Scalable multi-body dynamics

— Internal structural discretization and dynamics solution

Rotor Hub Lead Lag Damper

Control Cuff
Blade
Attachment

Hub  Pitch
Attach- Y .

ment Fla!innq Lead Lag
Hinge Hinge Blade

Datta
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Concluding Remarks

ol e e
STRENGTH THROUGH TECHNOLOGY

e Dual-mesh overset approach in Helios appears effective and
efficient for computation of aerodynamic loads and wake

Loads (figure of merit) within 2% of experiment
Wake vortices maintained well downstream with little dissipation
AMR overhead ~2% total cost

High-fidelity simulations on “working class” HPC systems
(128 processors or less)

e Refinement needed for near-body, as well as off-body

e New capabilities currently under development by Helios team

Automated wake refinement through feature detection/error estimation
Automated near-body grid generation through strands

Three-dimensional parallel structural dynamics & trim

Look forward to presenting results of these capabilities at
the 2012 Overset Symposium!
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