

Overset Techniques for Hypersonic Multibody Configurations with the DPLR Solver

Andrew J. Hyatt, Dinesh Prabhu ERC Inc.

David A. Boger Penn State Applied Research Laboratory

10th Symposium on Overset Composite Grids and Solution Technology Moffett Field, CA

September 22, 2010

Outline

- Background
- Geometry / Flow Conditions
- Overset grid development process
- Results
- Conclusions

Background (DPLR)

- Data Parallel Line Relaxation (DPLR)
 - Three dimensional Navier-Stokes solver
 - Thermal and chemical non-equilibrium
 - Structured grids (block zonal)
- Standard grid development
 - Primarily interested in accurate heat transfer for Thermal Protection System (TPS) sizing
 - Simple geometry
 - Simple geometric shapes define body
 - Rotate about a singular axis
 - Replace topological singularity with a nonsingular patch
 - Hyperbolically extruded grid is tailored to the shock as part of the solution process
 - Built in grid tailoring routine within DPLR

Wright, M., Prabhu, D., and Martinez, E., "Analysis of Apollo Command Module Afterbody Heating Part I: AS-202", Journal of Thermophysics and Heat Transfer, Vol. 20, No. 1, 2006

Background

- In 2007 the overset capability was added to DPLR
 - DiRTlib (Noack AIAA-2005-5116)
- Two Stage To Orbit (TSTO) investigation made a perfect test case for the "new" overset capability
 - Complicated geometry (winglets, engine inlet)
 - Scramjet (Tip-to-Tail analysis)
 - Stage separation
- Simplified TSTO geometry utilized as a proof of concept
 - Overset capability was evaluated by comparing to point-matched grid solutions which have been the standard with DPLR

Geometry and Configuration

- The geometry considered is from the previous study by Yamamoto et al. (AIAA-2002-0217)
- Flow Conditions
 - Test gas was air
 - Mach = 9.56
- Modeling Assumptions
 - Laminar
 - Perfect Air (γ = 1.4)
 - Park 90 5-species Air

- Extra overlap region
 - Help match cell sizes at overset boundaries
 - Push the overset boundary out from the discontinuity at the shock
 - Fully contains the overset boundaries
- Overset nose patch used to remove the topology singularity on the lower cylinder
- No orphans at the outer boundary

Overset Boundary Between Bodies

Configuration A

- Shock tailored grid
 - Lower cylinder tailored grid
 - Upper cylinder tailored grid
 - Location of the upper cylinder shock
 - Overset boundary outside of the upper cylinder shock
- Shock / Boundary Layer Interaction

- Excellent agreement in heat flux contours
- Contour lines of pressure appear slightly more diffuse in pointmatched solution
- Excellent agreement in shock impingement heating level

9

Overset Boundary Between Bodies

Configuration B

- Shock tailored grid
 - Lower cylinder tailored grid
 - Upper cylinder tailored grid
 - Location of the upper cylinder shock
 - Overset boundary outside of the upper cylinder shock
- Shock / Boundary Layer Interaction
- Shock / Shock Interaction

Shock / Boundary Layer Interaction

- Differences in shock / shock interaction heat flux distribution
- Contour lines of pressure appear slightly more diffuse in pointmatched solution
- Excellent agreement in shock impingement heating level

• Clustering of the grid to the shock / boundary layer interaction region

Overset Boundary Between Bodies

Configuration C

- Shock tailored grid
 - Lower cylinder tailored grid
 - Upper cylinder tailored grid
 - Location of the upper cylinder shock
 - Overset boundary outside of the upper cylinder shock
- Shock / Shock Interaction
 - Spreading of the shock through the overset boundary

- Waviness in heat flux contours on the nose of the upper cylinder
- Offset in peak heating location in shock / shock interaction region
- Slight differences in the flow field at the shock / shock interaction region
- State as of AIAA Conference in June, follow on work included tracking down differences at the shock / shock interaction region

Overset Grid Topology (Updated)

Configuration C

- Orphans on outer boundary
- Refinement grids in the shock / shock interaction region
- Designed for easy of use in grid convergence analysis

- Peak heating location is still offset in overset solution from the pointmatched solution and the data
- Shock / shock interaction heating is very sensitive to grid resolution
- Peak heating location is the same at both grid resolutions

Configuration C

- Several topological singularities
- Topology required for this geometry made it impossible for the grid to remain aligned with the shocks

- Differences in upper cylinder shock location
- Point-matched solution lower cylinder shock appears more diffuse and further out from the body
- Possibly caused by the topology and grid alignment near the nose of the lower cylinder

- 20-degree shift in peak heating location with 1-degree change in angle of attack of the upper cylinder
- CFD by Yamamoto et al. also showed a shift in peak heating location

Conclusions

- Overset grids show a number of advantages for multibody hypersonic configurations
 - Proper alignment of the grid to strong gradients and discontinuities is possible
 - Leads to more accurate prediction of peak heating locations and level
 - Possible to highly resolve regions of interest without propagating grid density into more benign regions
 - Simplified grid generation
- Disadvantages to using overset grids
 - Inertia of point-matched grids
 - Learning curve associated with generating the domain connectivity information

Acknowledgment

- Much of this work was performed under NASA contract NNA04BC25C to the ELORET Corporation
- The continuation of this work was performed under NASA contract NNA10DE12C to ERC Inc.
- Thanks to Ralph Noack for his continued help using SUGGAR and GVIZ
- Thanks to Mike Olsen for helpful discussions throughout this work