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Introduction and Motivation

• CFD has seen significant progress in recent years in modeling the 

underlying flow physics and complex aerodynamic behavior associated 

with vortex-dominated flows

• Such flows include high-lift configuration, helicopter rotor tip vortex 

capture and preservation, prediction of rotor wash and blade-vortex 

interactions, etc 

• Accurate simulation of these flows requires a sufficiently resolved 
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• Accurate simulation of these flows requires a sufficiently resolved 

high-fidelity calculation in which vortical structures are captured and 

preserved for several blade revolutions

• Accomplishing this using a 2nd-order primitive-variable formulation of 

the Navier-Stokes equations can be difficult, as these formulations are 

often prone to excessive numerical dissipation of vortical structures



Introduction and Motivation

• Velocity-vorticity formulations of the Navier-Stokes equations offer 

several advantages over primitive-variable formulations and have been 

the recent focus of major research efforts

• Since the Eulerian Vorticity Transport (EVT) formulation deals with 

vorticity as the fundamental conserved quantity, there is inherently less 

smearing and dissipation of vortical structures than in a comparable 2nd-

4/37

www.cfdrc.com

smearing and dissipation of vortical structures than in a comparable 2nd-

order Navier-Stokes solution

• Additionally, there are fewer primary equations in the EVT solution 

process and the equations themselves are simpler and involve fewer 

operations than in Navier-Stokes solutions



Objectives

• Provide a novel CFD simulation capability for accurate and efficient 

simulation of vortex-dominated flows

• Enable effective coupling of compressible Euler solver in near-body 

region with incompressible adaptive Cartesian EVT solver in off-body 

wake region using overset grid technology

• Vorticity field originates at solid surfaces in near-body region and is 

transported into wake region employing off-body EVT solver

• Adaptive mesh refinement and coarsening allows 
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• Adaptive mesh refinement and coarsening allows 

vortical structures to be efficiently preserved 

with high-fidelity in wake region 

Compressible Euler 

Zone

Vorticity Transport Zone

Overlap 
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Mathematical Formulation of EVT

Consider the Navier-Stokes equations written in velocity-vorticity form: 
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We employ two approaches here for velocity solution:

1) Multigrid Poisson solution

2) Treecode method for integral form (Lindsay & Krasny, JCP 2001)
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Mathematical Formulation of EVT

Integrating over cell Ci: 
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(Rusanov flux)
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Employing the 2nd-order explicit Runge-Kutta scheme , we obtain
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Formulation of Compressible Euler Solver

Consider
∂Q
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E    u(E + p)    v(E + p)    

where E=p/(γ-1)+ρ(u2+v2)/2 is the total energy and γ=1.4

We employ the spectral volume method (Z. J. Wang, JCP 2002), in which 

the triangular grid cells are further subdivided into control volumes  

jiC ,

iS



Formulation of Compressible Euler Solver

Integrating the conservation law on Ci,j, we obtain
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where the solution is reconstructed from the cell-averages using 
Lagrange-like polynomials of the form 

Q(x, y) = L j (x, y)Q i , j

N
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The surface integration on each face can be performed using 
quadrature rules, or a quadrature free approach

We employ the explicit Runge-Kutta scheme for time integration

Q(x, y) = L j (x, y)Q i , j
j=1

∑ , where Lk (x, y)dV = V i ,jδ jk
Ci, j
∫
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Preliminaries:
� Overset grid assembly and interpolation between solvers provided by 

SUGGAR/DiRTlib libraries (Ralph Noack – Penn State ARL)

� EVT solver requires (       ) values interpolated from Euler solver, 

while Euler solver requires (          ) values interpolated from EVT solver

Euler / EVT Coupling Methodologies 
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� Vorticity field must be computed in Euler domain at every step

� Pressure field must be computed in EVT domain at every step
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Const
p
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� Density computed in EVT based on isentropic assumption

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

� Velocity field computed in EVT based on two different approaches

1) Multigrid Poisson solution

2) Treecode method for integral form (Lindsay & Krasny, JCP 2001)



EVT Velocity Fromulation

Method 1: Multigrid Poisson solution ω
rr

×−∇=∇ V
2

Poisson equation solved in EVT 

domain using velocity and 

vorticity interpolated to EVT 

receptor cells (green) as BCs 
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Euler receptor cells

EVT receptor cells 



EVT Velocity Fromulation

Method 2: Treecode method

EVT utilizes integral form: velocity is 

influenced by entire vorticity field (i.e. 

full Euler domain also)
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EVT “out” cells retained as “fringe” 

cells to store Euler vorticity values
____________________________________________________________________________________________________________________________________________________________
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Euler receptor cells

EVT receptor cells 
RV
r
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Helmholtz decomposition to include 

irrotational flow introduced by body
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Continuity then gives:
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Validation of Stand-alone EVT

S. K. Stanaway, B. J. Cantwell, and P. R. Spalart, Navier-Stokes simulations 

of axisymmetric vortex rings, AIAA Technical Paper, AIAA-88-0318, 1988.
Viscous Ring vortex propagation
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3 cells across core

6 cells across core

12 cells across core



Efficiency/Accuracy of stand-alone EVT/Euler solvers

� Vortex propagation with V=(0.1,0.1) until t=2

EVT

256 cells 1,024 cells 4,096 cells 16,384 cells 65,536 cells 262,144 cells
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Euler

256 cells 1,024 cells 4,096 cells 16,384 cells 65,536 cells 262,144 cells

2,400 cells 9,600 cells 38,400 cells 153,600 cells



Efficiency/Accuracy studies of EVT and Euler solvers

Relative cost to achieve desired error

Error vs number of cells
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� Euler is approximately one 

order-of-magnitude more 

expensive than EVT to achieve 

desired error!



Results for coupled EVT-Euler vortex propagation at Mach=0.2

Vorticity

Treecode approach Poisson approach

20/37

www.cfdrc.com

Vorticity in y direction at x=0.43, t=2.1486 (~10 cells across core) 



Results for coupled EVT/Euler simulations

Mach=0.2 flow over half cylinder 
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Euler grid



Mach=0.2 flow over half cylinder (vorticity contours)

Treecode approachPoisson approach
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Treecode approachPoisson approach



Mach=0.2 flow over half cylinder (vorticity contours)

Poisson 
approach

Treecode 
approach
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Mach=0.2 flow over half cylinder (pressure contours)

Poisson 
approach

Treecode 
approach
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Mach=0.2 flow over half cylinder (grids)

Poisson 
approach

Treecode 
approach

25/37

www.cfdrc.com



Results for coupled EVT/Euler simulations

Mach=0.2 flow over vortex generator 
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Euler grid close-up



Mach=0.2 flow over vortex generator (vorticity contours)

Treecode approachPoisson approach
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Treecode approachPoisson approach



Mach=0.2 flow over vortex generator (vorticity contours)

Treecode 
approach

Poisson 
approach
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Mach=0.2 flow over vortex generator (vorticity contours)

Poisson 
approach

Treecode 
approach
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Mach=0.2 flow over vortex generator (grids)

Poisson 
approach

Treecode 
approach
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Results for coupled EVT/Euler simulations

Mach=0.2 flow over NACA 0006 w/ vortex generator 
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Euler grid



Mach=0.2 flow over NACA 0006 w/ VG (Poisson)
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Vorticity contours



Mach=0.2 flow over NACA 0006 w/ VG (Poisson)

Vorticity
contours
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contours
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Summary and Conclusions

� Eulerian Vorticity Transport (EVT) solver successfully coupled 

to compressible Euler solver to accurately simulate vortex-

dominated flows

� Overset coupling facilitated by SUGGAR/DiRTlib libraries to 

minimize necessary modifications to individual solvers

� Vorticity generation in compressible domain, and subsequent 
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� Vorticity generation in compressible domain, and subsequent 

convection of vortical structures into EVT domain, was effectively 

demonstrated for several different vortex-dominated flow problems

� Implemented two different approaches for computing the EVT 

velocity field and demonstrated effectiveness of both



Ongoing and Future Work

� Coupling of EVT solver with OVERFLOW 2.1 Navier-Stokes solver

� Continued testing and validation of coupling approaches

� Development of Suggar++, including API for communicating EVT 

grid changes, in progress (Ralph Noack, Penn State ARL)
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grid changes, in progress (Ralph Noack, Penn State ARL)



Questions

Questions ???Questions ???Questions ???Questions ???
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