

# **Design Optimization for Boundary-Layer Ingesting Inlet on Overset Grid System**

#### Byung Joon Lee\* and Meng Sing Liou NASA GRC SEP 23<sup>rd</sup>, 2010

10<sup>th</sup> Symposium on Overset Composite Grids and Solution Technology NASA ARC, Moffett Field, CA



#### Outline

- Background & Motivation
  - Physics of Boundary-Layer-Ingesting Inlet
  - Previous Design Works for Offset Inlets
- Definition of Problem & Grid System
- Design Applications
  - Prevention of Boundary Layer Growth
  - Design Exploration of Vortex Generators\*
- Concluding Remarks

\*Optimization process using meta-model-assisted MOGA and data-mining process are carried out with the help of Dr. T. Kumano



#### **Background and Motivation**

- Physics of Boundary-Layer-Ingestion Offset Inlet
  - The N+2B configuration
    - Flush-mounted propulsion system

Ram drag

Noise

- Features
  - Reduction of Structural weight
     Wetted area
- Drawbacks
  - Boundary Layer Ingestion
  - Separation and Swirling Flow

30% Boundary Layer Ingestion







#### **Background and Motivation**

#### • Recent Design Works for Offset Inlets

- Conventional S-shaped Inlets
  - A. Jirasek, "Development and Application of Design Strategy for Design of Vortex Generator Flow Control in Inlets", AIAA 2006-1050



- BLI Offset Inlets
  - B.G.Allan *et al.*, "Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers", AIAA 2006-845







Effect of VGs for BLI inlet



# **Background and Motivation**

- Goals
  - Flow control for high performance BLI inlet via optimal design approaches on overset mesh system

- Prevention of abrupt boundary layer growth by surface design
  - High DOF design
  - Gradient based optimization using adjoint method
- Design exploration of VG configuration
  - Single or Multi-objective GA based on Surrogate model
  - Data-mining for guidance and physical insight in VG design to define size, orientation and position of individual VGs



#### **Flow Analysis**

• Geometry of Baseline Model



Geometric Information of VGs



|                                       | Bottom VGs | Side VGs |
|---------------------------------------|------------|----------|
| h (in.)                               | 0.181      | 0.163    |
| c ( <i>in.</i> )                      | 0.367      | 0.367    |
| α(°)                                  | 12.94      | 11.54    |
| d ( <i>in.</i> )                      | 0.216      | 0.30     |
| y <sub>1</sub> , y <sub>2</sub> (in.) | 0.246      | 0.721    |
| x <sub>le</sub> (in.)                 | 1.224      | 1.224    |

Specification of Baseline VGs (Optimized by Allan et al.)



# **Grid System**

- The Overset Mesh System
  - Components (14 million pts.)
  - 5 body fitted blocks (6.3 million pts.)
    - Duct Surface, Entrance Collar, Lip Collar, Cover, VG box
  - 6 Background blocks (1.7 million pts.)
  - 12 VG Blocks (0.5 million pts. per each VG)
  - Time cost for a flow analysis
  - 340 cores on NAS Pleiades-Westmere
  - 5 hrs. for preprocessing
  - $\rightarrow$  Needs the parallel algorithm for speed-up
  - 16 hrs. for flow analysis





# **Grid Modification I**

#### • Grid Modification Strategy for Surface Shaping

- 468 control points for flexible geometric change
- Modification of overset grids are carried out by using mapping from physical domain to spline domain.



Surface modification using control points



Modification of surface and volume grids of overset blocks



#### **Grid Modification II**

• Schematics for Displacement of VG blocks



# Hole-searching and Domain connectivity

- Hole-cutting
  - Hole-searching around zero-thickness VGs by distance measuring



Hole cutting at Vane Box grid

- Domain Connectivity
  - Sub-cell TFI for surface orphan cells
  - No overlap optimization (but considering CDP)
  - $\rightarrow$  Trimmed approach for inlet geometries except the region around VG blocks



#### **Flow Analysis**

#### • Numerical Schemes

- Governing Eqns. : 3-Dimensional RANS
- Turbulence Model :  $k \omega SST$
- Spatial Discretization : MUSCL with TVD limiter for high order spatial accuracy
- Time Integration : LU-SGS
- Parallel Computation : MPI



• Boundary Conditions

Boundary Layer Profile for Inflow Condition

- Inflow Condition
  - Boundary layer profiles are evaluated by CFD solution of turbulent flat plate flow. (35% BLI with respect to the height of inlet highlight)
  - M=0.85, Re#=3.8mil.
  - Extension of computational domain:  $-20 \le x/D_2 \le 20$
- Outflow condition (Outlet of Inlet)
  - Specify the static pressure to match desired MFR
  - Use Chung and Cole (1995) formula to give initial estimate of static pressure



#### **Performance Metrics**

- Inlet Flow Distortion
  - Spatial variation in the total pressure contour at AIP (Aerodynamic Interface Plane).
    - Increase high cycle fatigue on fan blades.
    - Reduced compressor stability margin.
    - Causes engine surge (stall)
- SAE average circumferential distortion

$$DPCP_{avg} = 1 / N_{rings} \sum_{i=1,5} (P_{t_{avg,i}} - P_{t,low_{avg,i}}) / P_{t_{avg,i}}$$

 $N_{rings} = 5$  : Number of Rings

 $P_{t_{avg,i}}$ : Average of Total Pressure for *i*<sup>th</sup> ring  $P_{t,low_{avg,i}}$ : Average of  $P_{t_{n,i}} (\leq P_{t,avg_i})$  at *i*<sup>th</sup> ring





#### **Optimization Case I Prevention of Boundary Layer Growth**

- Sensitivity Analysis
- Definition of Design Problem
- Results & Discussion



# **Sensitivity Analysis**

- Discrete Adjoint Formulation for Overset Mesh System
  - Computational time cost is independent of number of design variables
  - Objective Function

$$f(\mathbf{Q}_i, \mathbf{Q}_i^F, \mathbf{X}_i, \mathbf{X}_i^F, \mathbf{D}; i = 1, 2, \cdots)$$
 F: Fringe Cell

- Residuals

$$\mathbf{R}_{i}\left(\mathbf{Q}_{i},\mathbf{Q}_{i}^{F},\mathbf{X}_{i},\mathbf{D}\right)=0 \qquad \mathbf{R}_{i}^{F}\left(\mathbf{Q}_{i}^{F},(1-\delta_{i,j})\mathbf{Q}_{j},\mathbf{X}_{i}^{F},\mathbf{D}\right)=0$$

- Sensitivity

$$\frac{df}{d\mathbf{D}} = \sum_{i} \left[ \frac{\partial f}{\partial \mathbf{Q}_{i}} \frac{d\mathbf{Q}_{i}}{d\mathbf{D}} + \frac{\partial f}{\partial \mathbf{Q}_{i}^{F}} \frac{d\mathbf{Q}_{i}^{F}}{d\mathbf{D}} + \frac{\partial f}{\partial \mathbf{X}_{i}} \frac{d\mathbf{X}_{i}}{d\mathbf{D}} + \frac{\partial f}{\partial \mathbf{X}_{i}^{F}} \frac{d\mathbf{X}_{i}^{F}}{d\mathbf{D}} + \frac{\partial f}{\partial \mathbf{D}} \right]$$



#### **Sensitivity Analysis**

- Discrete Adjoint Formulation for Overset Mesh System
  - Sensitivity Equations combined with Residual Constraints

$$\frac{df}{d\mathbf{D}} = \sum_{i} \left\{ \begin{bmatrix} \frac{\partial f}{\partial \mathbf{Q}_{i}} + \mathbf{\Lambda}_{i} \frac{\partial \mathbf{R}_{i}}{\partial \mathbf{Q}_{i}} + (1 - \delta_{i,j}) \mathbf{\Lambda}_{j}^{F} \frac{\partial \mathbf{R}_{j}^{F}}{\partial \mathbf{Q}_{i}} \end{bmatrix} \frac{d\mathbf{Q}_{i}}{d\mathbf{D}} + \begin{bmatrix} \frac{\partial f}{\partial \mathbf{Q}_{i}^{F}} + \mathbf{\Lambda}_{i} \frac{\partial \mathbf{R}_{i}}{\partial \mathbf{Q}_{i}^{F}} + \mathbf{\Lambda}_{i}^{F} \frac{\partial \mathbf{R}_{i}^{F}}{\partial \mathbf{Q}_{i}^{F}} \end{bmatrix} \frac{d\mathbf{Q}_{i}^{F}}{d\mathbf{D}} \right\} \\ + \begin{bmatrix} \frac{\partial f}{\partial \mathbf{X}_{i}} + \mathbf{\Lambda}_{i} \frac{\partial \mathbf{R}_{i}}{\partial \mathbf{X}_{i}} \end{bmatrix} \frac{d\mathbf{X}_{i}}{d\mathbf{D}} + \begin{bmatrix} \frac{\partial f}{\partial \mathbf{X}_{i}^{F}} + \mathbf{\Lambda}_{i}^{F} \frac{\partial \mathbf{R}_{i}^{F}}{\partial \mathbf{X}_{i}^{F}} \end{bmatrix} \frac{d\mathbf{X}_{i}^{F}}{d\mathbf{D}} + \mathbf{\Lambda}_{i} \frac{\partial \mathbf{R}_{i}}{\partial \mathbf{D}} \end{bmatrix}$$

- Formulations of Adjoint Equations

$$\Lambda_{1} \frac{\partial \mathbf{R}_{1}}{\partial \mathbf{Q}_{1}} + \Lambda_{2}^{F} \frac{\partial \mathbf{R}_{2}^{F}}{\partial \mathbf{Q}_{1}} = -\frac{\partial f}{\partial \mathbf{Q}_{1}} \qquad \Lambda_{2} \frac{\partial \mathbf{R}_{2}}{\partial \mathbf{Q}_{2}} + \Lambda_{1}^{F} \frac{\partial \mathbf{R}_{1}^{F}}{\partial \mathbf{Q}_{2}} = -\frac{\partial f}{\partial \mathbf{Q}_{2}}$$
$$\Lambda_{1} \frac{\partial \mathbf{R}_{1}}{\partial \mathbf{Q}_{1}^{F}} + \Lambda_{1}^{F} \frac{\partial \mathbf{R}_{1}^{F}}{\partial \mathbf{Q}_{1}^{F}} = -\frac{\partial f}{\partial \mathbf{Q}_{1}^{F}} \qquad \Lambda_{2} \frac{\partial \mathbf{R}_{2}}{\partial \mathbf{Q}_{2}^{F}} + \Lambda_{2}^{F} \frac{\partial \mathbf{R}_{2}^{F}}{\partial \mathbf{Q}_{2}^{F}} = -\frac{\partial f}{\partial \mathbf{Q}_{2}^{F}}$$



- Design Formulation
  - Minimize : **DPCP**<sub>avg</sub> Subject to :  $|\Delta z_i| \le z_L$  $z_i$  : *z* coordinate of *i*<sup>th</sup> control point
  - $z_L$ : limit of design variable (10% of  $D_c$ )
- Design Condition
  - M=0.85, Re#=3.8mil., A<sub>0/</sub>A<sub>c</sub>=0.533
  - BLI thickness : 35% of Inlet Height
- Design Variables
  - Control Points of B-Spline Patch
- Design Tools
  - Gradient Based Optimization
  - Optimizer : BFGS (Broyden-Fletcher–Goldfarb–Shanno)
  - Sensitivity Analysis : Discrete Adjoint Method



Flow Chart of GBOM



- Design History
  - Simultaneous improvements of total pressure recovery and distortion.
  - Fundamental change of core region of low total pressure region.





Comparison of Flow Patterns

**Baseline Model** 

- Uniform flow at bottom surface (reduction of secondary flow)
- Decrease of the size of lip separation





Total Pressure Contour and Streamlines

# NASA

#### **Design Optimization - Case I**

• Flow Patterns Corresponding to Geometric Change



Magnified view of streamlines near inlet throat on plane  $y/D_2=0.5$ , Revealing a valley following a mild peak and preceding a major one.



• Flow Pattern Change



Comparison of boundary layer thicknesses and shape factor on symmetry plane.



#### **Optimization Case II Design Exploration of VG Configuration**







- Design Objectives
  - Maximize total pressure recovery
  - Minimize distortion (DPCP)
- Design Condition
  - M=0.85, Re#=3.8mil., A<sub>0/</sub>A<sub>c</sub>=0.509
  - BLI thickness : 35% of Inlet Height
- Design Variables
  - Position of VGs (24 DVs)
  - Inclination angle of VGs (12 DVs)
  - Height and length of VGs (4 DVs)
- Design Tools
  - Kriging model-assisted MOGA
  - Initial Sample Points : Latin hyper cube approach
    - + Additional sample points for maximum Expected Improvement.





• Self Organizing Maps from initial sample points

|                | PR | DPCP                     |
|----------------|----|--------------------------|
| L <sub>B</sub> | ?  | 0~0.2<br>(0.18~0.252)    |
| Η <sub>B</sub> | ?  | 0.2~0.4<br>(0.144~0.198) |
| L <sub>S</sub> | ?  | 0.7~1.0<br>(0.432~0.54)  |
| Hs             | ?  | 0~0.2<br>(0.08~0.128)    |

#### Guideline for VG sizing

- $L_B$  :Length of Bottom VGs
- H<sub>B</sub> :Height of Bottom VGs
- $\mathsf{L}_\mathsf{S}$   $% \mathsf{L}_\mathsf{S}$  :Length of Side VGs  $% \mathsf{S}_\mathsf{S}$
- $H_S$  :Height of Side VGs





Length – Side VGs

Height – Side VGs



 Distribution of 0.0 initial samples 0.03 and predicted 0.0 Pareto front 0.02



for the CFD evaluation



Investigation of optimal designs

 (i) Optimal Point 1 : PR= 0.9711 , DPCP = 0.01598
 Bottom VGs : h=0.2148 (in.), c=0.1904 (in.)
 Side VGs : h=0.1442 (in.), c=0.4166 (in.)









Investigation of optimal designs

 (i) Optimal Point 1 : PR= 0.9711 , DPCP = 0.01598
 Bottom VGs : h= 0.2148 (in.), c=0.1904 (in.)
 Side VGs : h= 0.1442 (in.), c=0.4166 (in.)



Half of the Geometry cut by Symmetry line



Investigation of optimal designs

 (ii) Optimal point 2 : PR= 0.9694, DPCP= 0.01501
 Bottom VGs : h=0.2157 (in.), c=0.2393 (in.)
 Side VGs : h=0.0945 (in.), c=0.4281 (in.)





Bottom VGs

Side VGs

AIP Contour



Investigation of optimal designs

 (ii) Optimal point 2 : PR= 0.9694, DPCP= 0.01501
 Bottom VGs : h=0.2157 (in.), c=0.2393 (in.)
 Side VGs : h=0.0945 (in.), c=0.4281 (in.)



Half of the Geometry cut by Symmetry line



#### Conclusion

- VG design for BLI inlet with a high-fidelity flow analysis on overset mesh system.
  - Through design applications for BLI inlet, the capability of overset mesh system for positioning of parts is successfully demonstrated.
- Prevention of abrupt growth of boundary layer
  - Gradient-based optimization approach using discrete adjoint method for extended design space to find out a new geometry with less information about the flow field for the surface design.
  - Simultaneous improvement in distortion and total pressure recovery.
- Design exploration of VG configuration
  - The positioning of individual VG showed a potential for further improvement in performance.
  - The guideline of VGs design is obtained through data-mining.



#### Conclusion

#### • Guidelines for VG design.

|                | PR | DPCP                     |
|----------------|----|--------------------------|
| L <sub>B</sub> | ?  | 0~0.2<br>(0.18~0.252)    |
| Η <sub>B</sub> | ?  | 0.2~0.4<br>(0.144~0.198) |
| L <sub>S</sub> | ?  | 0.7~1.0<br>(0.432~0.54)  |
| H <sub>s</sub> | ?  | 0~0.2<br>(0.08~0.128)    |

Guideline for VG sizing

- $L_B$  :Length of Bottom VGs
- H<sub>B</sub> :Height of Bottom VGs
- $L_S$  :Length of Side VGs
- $H_S$  :Height of Side VGs



2. Short chord length and medium height of bottom VGs







#### **Future Plan**

• Design of hybrid wing/body configuration and embedded BLI-inlet





# Thank you for your attention