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Background Motivation

T bler
Aims

Electricity from ocean waves

@ Urgent need to deploy renewable energy technologies

@ Ocean wave energy can make significant contribution to mix
@ Young industry developing many different design concepts
@ Practical computational tools required
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The problem
Aims

Modelling water waves

Flow characteristics

@ High Reynolds numbers: > 107

@ Incompressible fluid

@ Internal flow is irrotational

@ Viscosity significant at walls and during wave breaking

Possible simulation approaches

@ Direct solution of Navier-Stokes equations
@ Inviscid Euler equations
© Boussinesqg-type formulations
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The potential flow approach

Our strategy
@ Assume potential flow
@ Separate inclusion of friction and wave breaking effects

@ Velocity field is gradient of scalar function: velocity potential
@ Implies flow is irrotational and thus inviscid and laminar

@ No boundary layers or turbulence

@ Fluid assumed incompressible
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Aims

The non-linear wave problem

n(x, 1)

(X, 2. 1) h(x)
(u,0,w) = (Vo, ¢)
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Governing equations

Laplace’s equation: V2¢ + 0,6 =0 where —h<z<n

Boundary conditions

@ Free surface
e Kinematic: 8y = W (1 + Vn-Vn) — V- Vn
o Dynamic: di¢ = —gn — 1/2 (VJ) Vé—WwP(1+Vn- Vn))

@ Solid surface: (n,n;) - (V,0;)¢» =0 where (x,z) € 0Q
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The linear formulation

The assumption

The wave elevation is small compared to the wavelength and the free
surface velocity is thus vertical.

Reduced equations

@ Laplace’s equation: V24 + 9,,6 =0 where —h<z<n
© Free surface

o Kinematic: 9 = w

e Dynamic: di¢ = —gn

© Solid surface: (n,n;) - (V,0,)¢ =0 where (x,z)ec dQ
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Modelling objectives

@ Simulate fully non-linear wave-body interaction

Preliminary

@ Computational tool describing linear case
@ Variable depth and complex body geometries

Immediate
@ Extend single-block wave model to multiple curvilinear grids

Today’s talk: Linear multi-block solutions for wave-body interaction
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Spatial solution
Temp: evolution
Numerical framewo

Solution strategy

A finite-difference approach

@ Require method to identify velocity potential at every grid point
@ Represent spatial governing equations in finite-difference form
@ Transformations between physical and computational space

@ Include interpolation between blocks

@ Construct multi-block linear system and solve
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Spatial solutit

Solution strategy Temporal ev
empo

Boundary conditions

@ Dirichlet condition applied at free-surface points
@ Neumann conditions applied at solid-surface ghost points

@ Conditions enforced using one of two approaches:

@ off-centred schemes, single ghost layer at solid surface
@ centred schemes, multiple ghost layers and extrapolation
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Solution strategy

Curvilinear transformations

® Mappings: [n(x,y),¢(x,y)] and [x(n,¢),y(n.C)]
@ Partial derivatives in two spaces related by:

Ox = Cxag + nxan, ay = Cy8< + 7]yan, etc.
@ Express derivatives as operations in computational space:

”
Ox = J (YnOc = yc0y) where J = xcyy — Xy, ete.

Read & Bingham Ocean wave-structure interaction



Spatial soll
Temporal evolution
Numerical framework

Solution strategy

A Runge-Kutta approach

@ Advance using classical fourth-order Runge-Kutta method

d n 35’/02
— | %= Ki + 2ko + 2k3 + K
dt[qﬁ] [—977]’ Y1 = }’n+ (1+ 2+ 2k3 + k)
~——
y f(t.y)

@ Time step determination using a Courant number of 0.5

- At t/
CFL condition: u— < C In this case: =05
Ax ax/x
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Spatial solution
Temporal evolution
Numerical framework

Solution strategy

Software

Matlab

@ Straightforward implementation, debugging, and testing
@ Can maintain total flexibility in spatial order of accuracy

V.

Overture

@ Code framework to solve pde’s on multiple curved blocks

@ C++ libraries provide functionality with low-level control

@ Powerful grid generation and parallel processing capabilities
@ Multiple solvers, but limited to fourth-order spatially
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Standing wave
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Overture implementation

@ Unit square, 50 by 50 points @ Fourth-order schemes
@ Sinusoidal surface, A =1m @ Courant number = 0.5
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Velocity potential

Linear results

Standing wave
Heaving cylinder
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Standing wave
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Numerical error
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Matlab implementation
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@ Vertical flux at cylinder @ Sixth-order spatial schemes
@ Free-surface initially flat @ Gaussian displacement profile
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Standing wave
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Added mass and damping

o A

0.9 + Blw

\ A Exact
~ — ~ Bl Exact| |

kR

@ Good agreement between numerical and analytical solution
@ Differences in added mass at long wavelengths expected
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Linear results

Overture implementation
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@ Vertical flux at cylinder @ Fourth-order schemes
@ Free-surface initially flat @ Manufactured solution testing
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Linear results Heaving cylinder

The velocity potential
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Summary

Outlook

Accomplishments

@ Implemented linear wave models on curvilinear multiblock
geometries

@ Evaluated added mass and damping of heaving cylinder

Work in progress - Overture

@ Evaluate added mass and damping and compare results

@ Investigate using arbitrary-order spatial schemes

@ Implement iterative solver

@ Further investigate grid generation capabilities and extend to 3-d
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