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MOTIVATION 

• Army S&T aeromechanics technology objectives

– Improved rotorcraft characteristics

– Aeromechanics modeling, accuracy & 
productivity improvement

• Army rotorcraft CFD

– Development of CFD software analysis tools
• HPCMO HI-ARMS Institute / CREATE-AV

– High performance computing
• Rotorcraft aerodynamics problems require 

state-of-the-art high-performance computers

– Cutting-edge research and application to DoD 
aircraft

• Improve design process by complementing existing 
design methods

Lift to drag ratio + 8%

Maximum blade loading +24%

Vibratory response -30%

Detection distance -50%
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ACTIVE ROTOR CONCEPT

Boeing SMART Rotor (40x80)

• Benefits of performance, 
vibration, and noise 
advancements
– Improved range, payload, 

speed, maneuverability

– Improved component life

– Reduced maintenance

– Improved community 
acceptance

– Decreased acoustic 
detectability
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• Unsteady, interactional 
aerodynamics

• Complex, high-fidelity geometry

• Large range of flow velocities

– Hover, cruise, maneuver

– Low subsonic to supersonic
• Disparate length and time scales 

– Rotor, wake, vortices, viscous 
layers

• Wake modeling

– Minimize numerical dissipation 
and convect over long distances

• Turbulence modeling
• Multidisciplinary coupling

MODELING CHALLENGES
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ROTOR CONFIGURATION

(Straub 2009)

• Boeing Smart Material Actuated Rotor Technology (SMART) rotor
– Full-scale, 5-bladed, flapped MD900 bearingless rotor

• 16.9 ft radius, 10 inch chord, parabolic tip
• 18% span piezoelectric flap (74 - 92% R), 35% chord
• 0.62 hover tip Mach number

• Objectives to demonstrate reductions in
– Noise: in-plane, blade-vortex interaction (BVI)

– Vibration
– Power: cruise - 123, 155 kts (µ = 0.30, 0.38)
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WIND TUNNEL TEST

• DARPA/BoeingNASA/Army test in the DoD National Full-Scale 
Aerodynamic Complex 40- x 80-Ft Wind Tunnel (NASA Ames)
– Database of blade and pitch link structural loads, control positions, rotor 

forces and moments, BVI and in-plane microphones ?(no surface 
pressures)

– Papers by Straub, Hall, JanikaRam, Sim, and Kottapalli 
at 2009 AHS Forum

closed loop flap control
(Straub/Hall 2009)

UNCONTROLLED

CLOSED LOOP CONTROL
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• CAMRAD II
– State-of-the-art multidisciplinary rotorcraft comprehensive analysis (CA) performs 

structural dynamics and trim
– CFD/CSD coupling replaces CA aerodynamics
– Important to ensure CFD and CSD geometric consistency

• Aerodynamic model
– Blade element lifting-line aerodynamics with airfoil table lookup (Mach, α, δ f) 

– 20 aerodynamic panels with continuous flap
– Free wake (CA) or uniform inflow (CFD/CSD)

• Structural model
– Boeing SMART rotor properties (NASA/Boeing)
– 10 non-linear beam finite elements:

• Axial, lead-lag, flap, torsion and DOFs
• Dual load path blade root (flexbeam/pitchcase)

– Elastic trailing edge flap with 5 hinges
– Compliant pitch links
– 18 modes used
– Numerical conditioning issues

CSD MODEL
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CFD METHODOLOGY

0.05-0.10 chord 
~ vortex core 
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• OVERFLOW 2.0aa (NASA/Army)

– Near-body, off-body overset grid paradigm

• Body-fitted, stretched curvilinear "near-body" grids

– Structured grid generation is labor intensive for complex 
configurations 

• Automatic, multi-level, Cartesian "off-body" grids

– Efficient, accurate, automated, and adaptable

• Subroutine-activated domain connectivity
– Requires user expertise and can be sub-optimal
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• High-fidelity geometric modeling
– Pitchcase, blade and flap (elastic)
– Hub and instrumentation fairing
– Discrete flap gaps

• Grid generation
– Baseline (coarse) grid

• 17 million grid points
– 820,000 points per blade
– 75% off-body

• 12% chord wake spacing

– Fine grid with 66 million points

• Numerical scheme
– 3rd-order spatial central-difference scheme 

with matrix dissipation
– 2nd-order temporal scheme with 

subiterative dual-time stepping
– 0.25° time step (RPM?)

CFD MODEL

flap gap modeling

 
< 0.1 inches
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• Loose coupling exchanges 
periodic forces/moments 

• “Dual rotor” concept, main and 
flap treated as separate 
“rotors” in CFD

• Modifications for multiple grids 
per blade

• Convergence on controls, 
forces/moments, and airloads

CFD/CSD COUPLING 
CONVERGENCE
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HOLE CUTTING AND 
CONNECTIVITY

• Complex and expensive grid 
connectivity using object xrays
– Tight tolerances to avoid 

collisions
– Must be performed every step
– Xrays do not handle disparate 

geometric fidelity very well
– Poor donor compatibility possible

• Resolutions
– Parallelized
– Elasticized
– Attention to details
– Reduced memory
– Cost reduced to < 20% flow 

solver step
– Now in OVERFLOWv2.2

spanwise flap gap (rear view)chordwise flap gap

flap grid

main grid

overset surface gridsoverset volume grids
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XRAY STRATEGY-OVERALL

Single Blade - Single XRay
10MByte Xray file size

Blade and flap - 10 XRays
185MByte Xray file size

Coarse and fine grids have to use the same XRAYS
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XRAY STRATEGY- GAP DETAIL

395 x 77

103 x 1376

147 x 43

1831 x 221

∆ x = 0.25”

∆ x = 0.008” ∆ x = 0.008”

∆ x = 0.25”



14

ORPHAN POINTS
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EARLY ATTEMPTS

• What could possibly go wrong!?
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FLAP GAP DETAILS

• Complex, 3D flow in flap gaps
• Major challenge for overset grid methodology

– Some grid mismatch and donor compatibility issues

spanwise gap chordwise gap
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– Coupling every 2/5 rev for 7 
iterations (4 revs)

– Baseline coarse grid
• 128 processors of a Cray 

XT5
• 4.2 hours per rotor 

revolution
• Coupled solution in ~16 

hours
– Fine grid

• 320 processors
• 16 hours per rotor 

revolution

COMPUTATIONAL COST
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• Baseline flight conditions

– CT/σ = 0.075, 123 kts, 0.30 advance ratio, αs = -9.1º  (nose down)

– Trim conditions: thrust, zero flexbeam cyclic flapwise bending moment
• Retrim at each flap input

– Flap inputs: frequency, amplitude, and phase – e.g. 2P/1.5°/90°
• Frequency: 0, 2, 3, 4, and 5/rev
• Amplitude: nominal 1.5° flap deflection
• Phase angle sweep in 30° increments

• Multidisciplinary investigations

– Airloads and structural loads

– Aerodynamics and flow physics

– Performance

• Comparison with CAMRAD II and experimental results

• Most results use the coarse CFD grid

ANALYSIS AND RESULTS
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PERFORMANCE

• No flap deflection SMART configuration

• Good agreement with test for pitch control angles and (fine grid) torque

• Consistent comparison with experimental force data buildup (including 
hub)
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ZERO-FLAP DEFLECTION

• Complex fluid-structure 
interactions

• Blade-fixed reference 
frame
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FLAP INPUTS

• Moment flap mechanism

• 5P/1.5°/180°

• Incremental motions 
(exaggerated) and 
pressures from the 
baseline
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AERODYNAMICS – 
WAKE FLOWFIELD

Q criterion

2P/1.5º/90º

colored by sense of vorticity

• Detailed wake visualization and interactions
– Blade tip and flap end vortices

– Hub wake
– Super-vortex roll-up

0o

90o
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LESSONS LEARNED
RECOMMENDATIONS

gap modeling integral flap, gap approximation

Mishra – UMD

• The SMART flapped rotor is a challenging configuration for 
current state-of-the-art CFD, CSD and CFD/CSD coupling 
tools

– Considerable user expertise required
– Need for automated and optimized CFD domain connectivity procedures
– Need for CSD templates for complex configurations

• Modeling the flap gaps is a time consuming, detail-oriented 
task

– Consistency in the fluid-structure interface required

• Need for detailed flap gap modeling to be proven
– Simplified gap (flow-through) boundary conditions may be sufficient and/or geometrically 

realistic (e.g. integral flap)
– Simplification may not be accurate or possible for some active rotor concepts (e.g. slats)



24

ACKNOWLEDGEMENTS

• NASA SRW Program, NASA (Boyd, Kottapalli, Warmbrodt, Johnson, Lau), 
Boeing (Straub), AFDD (Sim, Ruzicka), Georgia Tech (Bain), the SMART rotor 
team, the HPCMO HI-ARMS Institute, and Navy DSRC computer resources


	Slide 1
	MOTIVATION 
	ACTIVE ROTOR CONCEPT
	MODELING CHALLENGES
	ROTOR CONFIGURATION
	WIND TUNNEL TEST
	CSD MODEL
	CFD METHODOLOGY
	CFD MODEL
	CFD/CSD COUPLING CONVERGENCE
	HOLE CUTTING AND CONNECTIVITY
	Slide 12
	Slide 13
	Slide 14
	EARLY ATTEMPTS
	FLAP GAP DETAILS
	Slide 17
	ANALYSIS AND RESULTS
	PERFORMANCE
	ZERO-FLAP DEFLECTION
	FLAP INPUTS
	AERODYNAMICS –  WAKE FLOWFIELD
	LESSONS LEARNED RECOMMENDATIONS
	ACKNOWLEDGEMENTS

