UNCLASSIFIED

10th Overset Composite Grids and Solution Technology Symposium

NASA-Ames Research Center

September 20-23, 2010

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Mark Potsdam, Aeroflightdynamics Directorate (AFDD) Mark Fulton, AFDD

Arsenio Dimanlig

Science and Technology Corp.

Aviation and Missile Research, Development and Engineering Center (AMRDEC) Moffett Field, CA

Approved for public release; distribution unlimited. Review completed by the AMRDEC Public Affairs Office 07 Apr 2010 and FN4570.

- Army S&T aeromechanics technology objectives
 - Improved rotorcraft characteristics
 - Aeromechanics modeling, accuracy & productivity improvement

Lift to drag ratio	+ 8%
Maximum blade loading	+24%
Vibratory response	-30%
Detection distance	-50%

- Army rotorcraft CFD
 - Development of CFD software analysis tools
 - HPCMO HI-ARMS Institute / CREATE-AV
 - High performance computing
 - Rotorcraft aerodynamics problems require state-of-the-art high-performance computers
 - Cutting-edge research and application to DoD aircraft
 - Improve design process by complementing existing design methods

- Benefits of performance, vibration, and noise advancements
 - Improved range, payload, speed, maneuverability
 - Improved component life
 - Reduced maintenance
 - Improved community acceptance
 - Decreased acoustic detectability

RDECOM MODELING CHALLENGES

- Unsteady, interactional aerodynamics
- Complex, high-fidelity geometry
- Large range of flow velocities
 - Hover, cruise, maneuver
 - Low subsonic to supersonic
- Disparate length and time scales
 - Rotor, wake, vortices, viscous layers
- Wake modeling
 - Minimize numerical dissipation and convect over long distances
- Turbulence modeling
- <u>Multidisciplinary coupling</u>

RDECOM ROTOR CONFIGURATION

- AMRDEC STRENGTH THROUGH TECHNOLOGY
- Boeing Smart Material Actuated Rotor Technology (SMART) rotor
 - Full-scale, 5-bladed, flapped MD900 bearingless rotor
 - 16.9 ft radius, 10 inch chord, parabolic tip
 - 18% span piezoelectric flap (74 92% R), 35% chord
 - 0.62 hover tip Mach number
- Objectives to demonstrate reductions in
 - Noise: in-plane, blade-vortex interaction (BVI)
 - Vibration
 - Power: cruise 123, 155 kts (μ = 0.30, 0.38)

Flap Actuator

- DARPA/BoeingNASA/Army test in the DoD National Full-Scale Aerodynamic Complex 40- x 80-Ft Wind Tunnel (NASA Ames)
 - Database of blade and pitch link structural loads, control positions, rotor forces and moments, BVI and in-plane microphones ?(no surface pressures)
 - Papers by Straub, Hall, JanikaRam, Sim, and Kottapalli at 2009 AHS Forum

CAMRAD II

- State-of-the-art multidisciplinary rotorcraft comprehensive analysis (CA) performs structural dynamics and trim
- CFD/CSD coupling replaces CA aerodynamics
- Important to ensure CFD and CSD geometric consistency

Aerodynamic model

- Blade element lifting-line aerodynamics with airfoil table lookup (Mach, α , δ_f)
- 20 aerodynamic panels with continuous flap
- Free wake (CA) or uniform inflow (CFD/CSD)
- Structural model
 - Boeing SMART rotor properties (NASA/Boeing)
 - 10 non-linear beam finite elements:
 - Axial, lead-lag, flap, torsion and DOFs
 - Dual load path blade root (flexbeam/pitchcase)
 - Elastic trailing edge flap with 5 hinges
 - Compliant pitch links
 - 18 modes used
 - Numerical conditioning issues

RDECOM CFD METHODOLOGY

- OVERFLOW 2.0aa (NASA/Army)
 - Near-body, off-body overset grid paradigm
- Body-fitted, stretched curvilinear "near-body" grids
 - Structured grid generation is labor intensive for complex configurations
- Automatic, multi-level, Cartesian "off-body" grids
 - Efficient, accurate, automated, and adaptable
- Subroutine-activated domain connectivity

- High-fidelity geometric modeling
 - Pitchcase, blade and flap (elastic)
 - Hub and instrumentation fairing
 - Discrete flap gaps
- Grid generation
 - Baseline (coarse) grid
 - 17 million grid points
 - 820,000 points per blade
 - 75% off-body
 - 12% chord wake spacing
 - Fine grid with 66 million points
- Numerical scheme
 - 3rd-order spatial central-difference scheme with matrix dissipation
 - 2nd-order temporal scheme with subiterative dual-time stepping
 - 0.25° time step (RPM?)

RDECOM CFD/CSD COUPLING CONVERGENCE

- Loose coupling exchanges periodic forces/moments
- "Dual rotor" concept, main and flap treated as separate "rotors" in CFD
- Modifications for multiple grids per blade
- Convergence on controls, forces/moments, and airloads

HOLE CUTTING AND CONNECTIVITY

- Complex and expensive grid connectivity using object xrays
 - Tight tolerances to avoid collisions
 - Must be performed every step
 - Xrays do not handle disparate geometric fidelity very well
 - Poor donor compatibility possible
- Resolutions
 - Parallelized
 - Elasticized
 - Attention to details
 - Reduced memory
 - Cost reduced to < 20% flow solver step
 - Now in OVERFLOWv2.2

overset volume grids

chordwise flap gap

spanwise flap gap (rear view)

overset surface grids

XRAY STRATEGY-OVERALL

Single Blade - Single XRay 10MByte Xray file size **Blade and flap - 10 XRays** 185MByte Xray file size

Coarse and fine grids have to use the same XRAYS

XRAY STRATEGY- GAP DETAIL

ORPHAN POINTS

• What could possibly go wrong!?

- Complex, 3D flow in flap gaps
- Major challenge for overset grid methodology

COMPUTATIONAL COST

- Coupling every 2/5 rev for 7 iterations (4 revs)
- Baseline coarse grid
 - 128 processors of a Cray XT5
 - 4.2 hours per rotor revolution
 - Coupled solution in ~16 hours
- Fine grid
 - 320 processors
 - 16 hours per rotor revolution

- Baseline flight conditions
 - C_T/ σ = 0.075, 123 kts, 0.30 advance ratio, α_s = -9.1° (nose down)
 - Trim conditions: thrust, zero flexbeam cyclic flapwise bending moment
 - Retrim at each flap input
 - Flap inputs: frequency, amplitude, and phase e.g. 2P/1 5°/00°
 - Frequency: 0, 2, 3, 4, and 5/rev
 - Amplitude: nominal 1.5° flap deflection
 - Phase angle sweep in 30° increments
- Multidisciplinary investigations
 - Airloads and structural loads
 - Aerodynamics and flow physics
 - Performance
- Comparison with CAMRAD II and experimental results
- Most results use the coarse CFD grid

- No flap deflection SMART configuration
- Good agreement with test for pitch control angles and (fine grid) torque
- Consistent comparison with experimental force data buildup (including hub)

- Complex fluid-structure
 interactions
- Blade-fixed reference frame

- Moment flap mechanism
- 5P/1.5°/180°

 Incremental motions (exaggerated) and pressures from the baseline

1

AERODYNAMICS -WAKE FLOWFIELD

- Detailed wake visualization and interactions
 - Blade tip and flap end vortices
 - Hub wake
 - Super-vortex roll-up

2P/1.5°/90°

RECOMMENDATIONS

- The SMART flapped rotor is a challenging configuration for current state-of-the-art CFD, CSD and CFD/CSD coupling tools
 - Considerable user expertise required
 - Need for automated and optimized CFD domain connectivity procedures
 - Need for CSD templates for complex configurations
- Modeling the flap gaps is a time consuming, detail-oriented task
 - Consistency in the fluid-structure interface required
- Need for detailed flap gap modeling to be proven
 - Simplified gap (flow-through) boundary conditions may be sufficient and/or geometrically realistic (e.g. integral flap)
 - Simplification may not be accurate or possible for some active rotor concepts (e.g. slats)

Mishra – UMD

integral flap, gap approximation

3

 NASA SRW Program, NASA (Boyd, Kottapalli, Warmbrodt, Johnson, Lau), Boeing (Straub), AFDD (Sim, Ruzicka), Georgia Tech (Bain), the SMART rotor team, the HPCMO HI-ARMS Institute, and Navy DSRC computer resources

