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Motivation
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• Reliable flow prediction is essential to the 
development of rotorcraft and the support of 
flight operations

• This requires accurate first-principles 
modeling of the rotor wake structure to 
predict blade airloads, fuselage loads and 
interactional aerodynamics

But …

• Conventional grid-based CFD codes have 
high numerical diffusion of vorticity

• Lagrangian methods conserve vorticity, but 
have formulational limitations (i.e. core 
models, divergence, stability, cost)

Motivation

AH-64 empennage evolution
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Contemporary Strategies (focus on 
conventional CFD)

• Increase grid density
– Costly

• Higher order methods
– First order near steep gradients; complex; 

limited adaptation

• Modify Navier-Stokes equations to conserve 
angular momentum

– More expensive; smearing of vorticity 
reduced, but still significant  

• Modify error terms
– Base convergence error on vorticity rather 

than primitive variables (2D)

Motivation (cont’d)

RAH-66 empennage evolution
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Hybrid grid-based solution

• CFD code coupled to VorTran-M
– General interface exploiting modular/library 

construct of VorTran-M

• Advantages
– Exploits features of both solvers (i.e. NS near 

to surfaces and VorTran-M in the wake)
– Not constrained by configuration (i.e. 

rotorcraft only)
– Solve the same fundamental equations
– Enables automatic exploitation of both 

ongoing and future solver developments

• Impact
– Improved capturing and preservation of 

complex wake structures (leading to reduced 
development costs)

Motivation (cont’d)

X-2TD empennage 
evolution
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Overview of VorTran-M
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VorTran-M: Overview

• Modularized and extended version of the 
CFD solver employed by Brown’s VTM

– Module/software library
– Adaptable interface source code

• Whitehouse et al, Overset Grid 
Symposium 2006

• Whitehouse et al, AHS Forum 2007
• Keller et al, I/ITSEC 2007
• Whitehouse and Tadghighi, AHS 

Aeromechanics Conference, 2010
• Whitehouse et al, AHS Forum 2010

• General coupling interface strategy
– Supports multiple “inner solver” 

formulations and grid constructs
– Supports multiple simultaneous solver 

types

Overview of VorTran-M

CFD/VorTran-M prediction of the
wake behind a wing at 90 o

angle of attack 
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VorTran-M: Flow solver

• Solves the incompressible Navier Stokes 
equations (vorticity-velocity form)

using a variant of Toro’s WAF scheme

• Cell centered adaptive grid scheme

• Fast Biot-Savart / Poisson solvers 

• Over 10 years of continued development 

• Extension to compressible flow has been 
formulated

Caradonna & Tung rotor, hover

800,000 cells. 50 cells/R, 6 cells/c

Harris rotor, µµµµ=0.04

370,000 cells, 40 cells/R, 2.8 cells/c

Overview of VorTran-M (cont’d)

Suu
t

+∇=∇⋅−∇⋅+
∂
∂ ωυωωω 2

ω×−∇=∇ v2



10/37Continuum Dynamics, Inc.

CFD Integration: Solver Types
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Target host solvers

• Goal is to interface with a wide variety 
of solver and grid types

– RANS/Euler
– Structured
– Unstructured
– Moving and deforming grids
– Overset

• Solvers investigated
– RSA3D

• Rotor Stator Aeroelastic analysis in 3D 
• Developed for NASA GRC by CDI
• Multiple 3D unstructured deforming 

moving grids (sliding interface)
• Tightly coupled nonlinear FE solver
• AIAA-1994-0415, AIAA-1994-2269, 

Whitehouse et al AHS Forum 2007

CFD Integration: Solver Types

• Solvers investigated (cont’d)
– CGE

• Cartesian Grid Euler solver 
• Developed by CDI for design apps.
• 3D adaptive Cartesian grid
• Support for imperfect geometries
• AIAA-1994-0415, AIAA-1994-2269, 

Keller et al I/ITSEC 2007

– OVERFLOW
• NASA structured overset grid RANS 

solver 
• AIAA-1999-3302, AIAA-2009-3988 etc 

– FUN3D
• NASA unstructured grid RANS solver 
• NASA TM-4295, AIAA-2009-1360 etc
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CFD Integration: Coupling Strategy
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VorTran-M specifies flow on
CFD boundary

VorTran-M domain

CFD calculates flow field to initialize 
the VorTran-M solution

Overview of Coupling Strategy

• CFD solver calculates near-body flow 
field

• CFD solver sets VorTran-M solution in 
suitably defined overlap region

• Evaluation of Biot-Savart law in VorTran-
M accounts for all contributions:

– Vorticity evolved in VorTran-M
– Flow field transferred from CFD solver

• VorTran-M solution feeds into CFD 
domain at outer boundaries

• Minimizing extent of CFD domain allows 
higher resolution within the domain and 
less numerical diffusion

CFD Integration: 
Coupling Strategy

Schematic of coupling strategy
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Information Exchange: Cell Intersection
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Information Exchange: 
Cell Intersection

Vorticity-based coupling

• Vorticity in CFD domain calculated by 
finite differencing

• Intersection between CFD cells and 
VorTran-M cells performed

– Establish relationship between each 
CFD cell and corresponding 
VorTran-M cell

• Volume weighted vorticity inserted 
into VorTran-M

• If inviscid, then include the vorticity 
on the surface (i.e. bound vorticity)

• CFD outer BCs set by VorTran-M

• Implemented in 
– RSA3D (unstructured)
– CGE (Cartesian grid)
– OVERFLOW 2.1 (overset structured)

Iso-surface of vorticity magnitude for single 
bladed rotor in forward flight 

(OVERFLOW/VorTran-M)
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Information Exchange: 
Cell Intersection (cont’d)

RSA3D

• Formal intersection between RSA3D’s 
tetrahedral and VorTran-M’s cubic cells

• Impulsively started wing at 8 o

– Inviscid
– NACA 0012
– Aspect Ratio = 8.8
– M=0.2
– 128 points around airfoil (270K tets.)
– 1.5c upstream, 2.5c downstream
– VorTran-M cell size = 0.18c

• Predicted lift coefficient on coarse grid 
to within 1.1% of inviscid theory

Perspective view of the developing wake 
structure for the impulsively started wing 
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Information Exchange: 
Cell Intersection (cont’d)

RSA3D (cont’d)

• Impulsively started wing at 90 o

• Predicted Strouhal = 0.2

Iso-surface of vorticity magnitude showing near
wake behind a wing at 90 o angle of attack 

Periodic spanwise shedding of vorticity
forming characteristic vortex street

Periodic chordwise shedding of vorticity
interacting with the quasi-2D vortex street
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Information Exchange: 
Cell Intersection (cont’d)

RSA3D (cont’d)

• Untrimmed 2-bladed rotor
– VR12
– 10o twist
– 72K tets. per blade
– Open root section (i.e. no root vortex)
– Blades are disjoint

• Demonstrated overset-moving grid 
capability of the interface

RSA3D/VorTran-M rotor wake predictions: 
two bladed untrimmed rotor in slow speed ascent 

(upper) and two bladed untrimmed rotor in 
forward flight (lower)
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Information Exchange: 
Cell Intersection (cont’d)

CGE

• Formal intersection between Cartesian 
grid and VorTran-M cells

– Trivial since tight control placed over 
Cartesian grid

• Ship airwake calculations
– Undertaken during development of 

ship airwake database for CAE (MH-
60R/SH-60B TOFT)

– >192 ship/wind combinations
– First commercially-generated ship 

airwake database

• NACA 0015
– Lift within 0.65% of experiment
– Tip vortex position within 1%
– Tip vortex core within 1.6% at 4c

CGE/VorTran-M grid intersection 

Adaptive VorTran-M 
grid

Cells align
in overlap
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Information Exchange: 
Cell Intersection (cont’d)

CGE (cont’d)

Spot 8 

W velocity [kts]

Spot 7 

W velocity [kts]

Velocity contours and vectors of 
an LHA airwake in a crosswind

LPD-4 ship airwake
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Information Exchange: 
Cell Intersection (cont’d)

OVERFLOW (2.1ab)

• Vorticity inserted at cell centroid
– Tight control placed on grid surrounding 

rotor (aligns with VorTran-M)

• 1-bladed rotor in forward flight
– 5 overlapping near-body grids
– OVERFLOW/VorTran-M and 

OVERFLOW calculations on similar 
grids

Blade

End caps

Hub

Iso-surface of vorticity magnitude OVERFLOW

Iso-surface of vorticity magnitude 
OVERFLOW/VorTran-M

Blade and hub grids

Wake diffuses quickly 
in off-body grid

Entire wake predicted
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OVERFLOW OVERFLOW/VorTran-M

∆s=0.43c

23.2c downstream

Slices through the grid for a 1-bladed rotor in 
forward flight

∆s=0.22c

31.7c downstream

33c downstream

40c downstream

∆s=0.87c

∆s=0.43c

Information Exchange: 
Cell Intersection (cont’d)
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Lessons learned

• Cell intersection exhibits positive results 
for a variety of solvers and applications

• In general, requires formal intersection
– Complicated
– Costly
– Invasive

• For structured and Cartesian grid-based 
approaches, intersection costs can be 
reduced

– Tight control must be placed on grid

• Requires vorticity to be calculated in 
every overlapping CFD cell

– Costly

Information Exchange: 
Cell Intersection (cont’d)

Intersection of unstructured (blue) and VorTran-
M grids (red) at left and center 
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Information Exchange: Overset
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Information Exchange: Overset

Velocity-based coupling

• CFD solution (velocity) calculated at 
overlapping VorTran-M cell corners

• Overlap/buffer regions can be 
determined entirely in terms of 
VorTran-M cells

– IBLANK information
– Simple surface-based cell marking

• Velocity passed to VorTran-M

• CFD BCs set on outer boundary

• Implemented in 
– OVERFLOW 2.1 (overset structured)
– FUN3D (unstructured)

Sample surface-based cell marking
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Information Exchange: 
Overset (cont’d)

OVERFLOW (2.1ab)

• 2-bladed Caradonna and Tung rotor
– 8o collective
– 1250 RPM

• OVERFLOW/VorTran-M grids
– “Engineering scale” and strategy
– 8 overlapping near-body grids
– 2 rotor blades, each with

• Main blade
• 2 End caps

– Body of revolution hub
– 1 surrounding grid (cubic cells, rotates 

with blades) 
– ~6.4 Million OVERFLOW nodes
– ~800,000 VorTran-M cells

Schematic of OVERFLOW/VorTran-M 
velocity-based coupling

VorTran-M 
sets BCs

VorTran-M finest grid
OVERFLOW 

calculates velocity at 
overlapping cell 

corners
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Information Exchange: 
Overset (cont’d)

OVERFLOW (2.1ab)

• OVERFLOW (coarse grid)
– “Engineering scale” and strategy
– Same NBGs as OVERFLOW/VorTran-M
– Automatic off body grid generation 

(factor of 2 scaling)
– ~19.8 Million Nodes

• OVEFLOW (fine grid)
– Same NBGs as OVEFLOW/VorTran-M
– Background rotating O-grid 
– Source BCs
– ~24 Million Nodes

Fine OVERFLOW grid system
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Information Exchange: 
Overset (cont’d)

OVERFLOW (2.1ab) (cont’d)

• Comparisons
– General wake prediction
– Loading
– Tip vortex trajectory

• Trim
– Experiment

• CT=0.046

– OVERFLOW (coarse grid)
• CT=0.0432
• 94% of experimental value

– OVERFLOW (fine grid)
• CT=0.0492
• 102% of experimental value

– OVERFLOW/VorTran-M
• CT=0.0458
• 99.6% of experimental value

No blade root vorticity

OVERFLOW (coarse grid) predictions of the 
wake near to the rotor

Blade root vorticity

OVERFLOW/VorTran-M predictions of the wake 
near to the rotor
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Information Exchange: 
Overset (cont’d)

OVERFLOW (2.1ab) (cont’d)

• OVERFLOW (coarse grid)
– Very little inboard loading
– Overprediction at tip

• OVERFLOW (fine grid)
– More accurate inboard loading
– Slight overprediction at tip

• OVERFLOW/VorTran-M
– Slight underprediction of tip loading
– More accurate mid-span loading 
– Underprediction of inboard loading Comparison of measured and predicted 

spanwise loading
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Information Exchange: 
Overset (cont’d)

OVERFLOW (2.1ab) (cont’d)

• OVERFLOW (coarse grid)
– Tip vortex diffuses significantly 

after ~135o, identification is 
impossible after ~ 270o

– Tip vortex is outboard and lower 
than measurements

– Significant increase in descent 
rate after ~180o

• OVERFLOW (fine grid) and 
OVERFLOW/VorTran-M

– Vertical and radial tip vortex 
position predicted correctly

– Radial contraction asymptote 
predicted correctly

Comparison of measured and predicted 
spanwise loading
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Information Exchange: 
Overset (cont’d)
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OVERFLOW (2.1ab) (cont’d)

• Porting
– Shared memory (SGI Altix)
– Distributed memory (MJM and 

other beowulf clusters)
– Assorted compilers (Intel, 

Portland, GNU)

• Scalability
– Tested on 72 core Microway

distributed memory cluster using 
both OpenMPI and MPICH

OVERFLOW/VorTran-M Scalability



32/37Continuum Dynamics, Inc.

Information Exchange: 
Overset (cont’d)

FUN3D

• Impulsively started wing at 90 o

– NACA 0012
– Aspect Ratio = 8.8
– M=0.2
– 128 points around airfoil (270K tets.)
– 1.5c upstream, 2.5c downstream

• Viscous
– Spalart-Allmaras turbulence model

• Additional ongoing demonstrations 
presented in Quon E. “Not Your 
Father’s Hybrid Code: Advancements 
in CFD-Based Hybrid Methods for a 
New Millennium” 

Mid-plane vorticity magnitude predicted by 
the FUN3D/VorTran-M coupled simulation for 

the NACA0012 wing at 90 o angle of attack
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Lessons learned

• Overset velocity-based approach 
addresses many of the limitations of 
the insertion method

– Intersection operations replaced with 
velocity interpolation procedures

• Simpler and already available in many 
solvers

– Less information exchanged between 
host solver and Module

• Amount of information exchanged now 
determined by VorTran-M cell size, 
not local CFD cell size

– Requires that the CFD solver can 
preserve the vorticity sufficiently in the 
overlap region

Information Exchange: 
Overset (cont’d)

Intersection of unstructured (blue) and VorTran-
M grids (red) at left and center 
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Conclusions
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Conclusions

• Demonstrated five CFD/VorTran-M couplings using two  difference interfacing 
strategies

– Unstructured (RSA3D and FUN3D)
– Cartesian (CGE)
– Structured overset (OVERFLOW)

• Demonstrated improved predictions
– Fixed wing
– Bluff body
– Isolated rotors

• Observed improved efficiency
– Fewer cells required for comparable fidelity predictions
– Simple mesh constructs and BC appear to be adequate for problems investigated 

to date
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