A BOEING

Overflow Applications on Transonic Airplanes

Steve Chaney Product Development Aerodynamics Boeing Commercial Airplanes

21 September 2010

Agenda

- Introduction
- Process description; production environment
- Selected examples
- Conclusion

Introduction

- Overflow used extensively and very productively throughout Boeing
- This presentation focused on Everett PD, High Speed Aerodynamics in Commercial Airplanes
- Long range cruise condition
 - 1990's HSCT (M~2.4); 737NG (M~0.78)
 - 2000 Sonic Cruiser (M~0.95)
 - 2000's 787, 747, 777, 737 (M~0.78-0.86)
- Development of an in-house production N-S capability integral to the High Speed Aero process

Development of Overflow Process -Requirements

- HSCT, SC, early 7e7 work confirmed Overflow accuracy
- Production environment on airplane program required process development
 - Automation (for analysis speed and optimization)
 - Robustness
 - Consistency (geometry/grid/solution) from config to config, between airplanes, year to year
- Force calculations that fit into existing drag build-up methods

Development of Overflow Process -Strategy

- Focus on conventional configurations instead of general purpose process
- Developed constant set of pegasus, mixsur, overflow inputs
 - Number of blocks, names, topology, and key grid indices
- Solution strategy
 - Settled on preferred setup for accuracy and robustness, and use it without change for consistency

Overset Modeling Benefits

- Overset grids key to Overflow success in airplane development
- Many grid blocks built once; X_DIR becomes library
- Only modified component needs rebuilt grid block ...
 - Nacelle/strut variations
 - Wing design and aeroelastic shape changes
 - Horizontal tail movement (for trim)
- ... or, new components need new blocks added to an existing model with a proven robust solution strategy already in place.
 - Flap support fairings
 - Antenna and light fairings
 - Gaps
- ... or, transfer grid model to other group for removal of component and replacement with increased model complexity

Process and Computer Improvements

High Speed Aerodynamics Overflow Solutions

High Speed Aero N-S Usage

- Enhancing performance estimates
 - Complementing full-potential, wind tunnel, flight test
- Detailed configuration analysis
 - Fairings/blisters, gaps, vg's, etc.
 - Flow field Info (inlet/outlet, icing, noise)
 - Off-Cruise (loads)
- Junction flow design
 - Parametric design and numerical optimization
 - Wing/body intersection, etc.

Typical Grid Model

- Surface: grids from lofts (AGPS)
- Volume: hypgen, legrid
- Blanking/Interpolation: Peg5, Hcuts/2-Fringe/Level2/Manual-holes
- Model size (flight Re#)

	# of points	# of blocks	
• WBVH	25e6	30	
• SN	15e6	20	
 Total (1 eng) 	40e6	50 blocks	(half-model)

• SN(propaero) 50e6

Overflow Solutions

- Overflow 1.8ab MLP
 - ARC3D (ILHS=2), Central (IRHS=0), local time steps
 - SA turbulence model (pre-computed global wall distance)
 - Flight: all turbulent
 - WT: zero production laminar region to trip
 - Matrix dissipation; multigrid; VISCX=.T.
 - 7 phases, 9500 steps (1500/1500/6500); smoothing ramps
 - Occasionally use restarts during optimizations
 - CL & CM driver (alpha correction every 2 steps)
 - X1: 16 MSP's, 20 clock-hours
- Overflow 2.1ae MPI
 - ILHS=0 (BW !), 7000 steps
 - SARC, SST (NQT=205 !)
 - BC34, BC41, BC141 !

Typical [Delta] Drag Convergence

Internal Environment, Mods, Tools

- Overflow/CGT/Pegasus software management using subversion
 - NASA updates easily merged with local changes
- Modularized installation: unique directory/module file for each combination of version, compiler, mpi, cpp flags, etc.
- Self-submitting pbs scripts: command line switches that define module to load
- Local mods
 - CGT: mixsur, overint
 - Pegasus5: topology logic, Level2
 - Overflow(18): CLdriver, InletMdot, polymixsur, Turb Model distance, Overtrip, Thrust-Drag Bookkeeping
- X_DIR directories shared among high speed aero overflow users
 - Script looks for grid.x local first, then to library X_DIR

BOEING

Examples Strut/Nacelle Model Variations

Increasing Level of SN Model Detail

Examples Blister Fairing Additions

Antenna Fairing Added to existing model

DEING®

Examples Wing/Body Juncture Modeling

Typical Fillet/Bolt-Cover and Collar Volume Grid

N-S Based Shape Optimization

- N-S process/accuracy level ready for analysis and design
- Numerical optimization of side-of-body geometry (MDOPT: response surface)
- Several optimizations and wind tunnel tests
 - Drag reduction

Wing/Body Juncture Divergent Solution

Examples Empennage; Tail Movement for Trim

Viscous Flow Dominated Flowfields

Confluence of relatively large body BL and new BL on tail surfaces

Hbase for Gaps and Blunt trailing edges

Internal no-slip surface BC's

BOEING®

Side-of-Body Gap Flow with Hbase Grid

Examples Winglet Juncture Flow

N-S Based Optimization of Winglet

- Overflow-MDOPT design space with a wide range of junction geometries (56 Design variables)
- N-S based design able to approach theoretical aero optimum tight juncture

Conclusion

- Overflow very productive tool for product development high-speed aero analysis and design
 - Structured grid currently best for consistent drag results
 - Drag Reduction; Risk Reduction (Flight Re# Simulation)
- Accelerate transition to Overflow2 in 2011
 - New O21 capability testing successful
- Issues and potential enhancements
 - Fan face BC controls mass flow without imposing Pconstant
 - Tail movement for trim during solution
 - Pegasus Level2 algorithm

