

Not Your Father's Hybrid Code:

Advancements in CFD-Based Hybrid Methods for a New Millennium Eliot Quon

Introduction

WHY use a hybrid code?

- Preserve vortical wake over long ages using alternate Eulerian or Lagrangean methods
- Capture flow features accurately in the near-field using unstructured CFD

Previous work

Modeling: Past, Present and Future." 35th European Rotorcraft Forum, 2009, Hamburg, Germany

Source (top): Smith M.J., Shenoy R., Kenyon A.R., and R.E. Brown, "Vorticity-Transport and Unstructured RANS Investigation of Rotor-Fuselage Interactions." 35th European Rotorcraft Forum, 2009, Hamburg, Germany Source (bottom): Kenyon, R. and R.E. Brown, "Wake Dynamics and Rotor-Fuselage Aerodynamic Interactions.

Coupling Methodology

WHAT are we doing differently?

- Use **FUN3D** solver
- 3D Unstructured Navier-Stokes solver
- Handles overset dynamic meshes
- Has been coupled with CSD solvers (DYMORE, CAMRAD II) for aeroelastic analyses
- Evolve vortical wake using CDI's **VorTran-M** code
- Solves the Vorticity Transport equations, assuming incompressible, inviscid flow in wake
- Vorticity is a conserved quantity, allowing preservation of wake over long ages

Transport equation:	$\frac{\partial}{\partial t}\omega + \boldsymbol{u} \cdot \nabla \omega - \omega \cdot \nabla \boldsymbol{u} = S$
Vorticity source:	$S = -\frac{\mathrm{d}}{\mathrm{d}t}\omega_b + \boldsymbol{u}_b\nabla\cdot\omega_b$

- Added parallelized interface for coupling with VorTran-M
- Coupling with CDI's **CHARM** free-vortex wake code accomplished in similar manner, with the CHARM wake solution advanced on the master node and then broadcast to all other nodes

HOW are we doing this?

Solution in a Non-Rotating Frame

Background grid	VorTran-M wake coupling	C_L	Error* (%)
none	off	0.7732	7.9
farfield to 5c	off	0.7616	6.3
none	on	0.7326	2.2

Solution in a Rotating Frame

Coupling with CHARM: Rotor-Fuselage Interactions

FUN3D Rotor Coupled with CHARM Fuselage & Wake CHARM vortex trailers from rotor blades FUN3D iso-surfaces of vorticity Station 4

Current Work

- Parallelization of the VorTran-M code by CDI
- Continued investigation of rotary wings and validation of coupled results

Taking advantage of axisymmetry in hover FUN3D solution is VorTran-M copied to appropriate domain azimuthal locations FUN3D **Combined solution Preservation of vorticity** information passed smoothly Starting vortex observed

GT Advisor: CDI Collaborators: Prof. M. J. Smith Dr. G. Whitehouse and Mr. D. Wachspress

Sponsor:

NAVNAIR