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Motivation

Feature detection can be used to control AMR for rotorcraft flows.
However, using dimensional vorticity can be cumbersome.
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Overset Approach

Dual Mesh Paradigm within Helios

Unstructured near-body

domain resolves complex
geometry and computes
Navier-Stokes solution.
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Overset data exchanges
between the two grid

types.

Structured-AMR
Cartesian off-body
domain resolves wake
and computes higher-
order (5th/3rd order-
accurate in space/time)
Euler solution.

Project Goals

|. Control the off-body refinement process for unsteady flows.

|. Locate where to refine, based on features.

2. Determine proper resolution, based on solution error.

2. Ensure overall automation and efficiency.

M =0.1235,
AoA = 12°, |
Re=1.5x 06 ‘

- LU UV (21 B L i )

Strong off-body
dissipation of
vortex cores
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Threshold values are very problem- and case-dependent.
Non-dimensional Methods Validation
Cells tagged if functional value exceeds threshold.
|. Q (Normalized), difference between strain and T —_ —
rotation rates et ST
2. A2 (Normalized), corresponds to pressure minima
3. Mod.-A, eigenvalue of velocity gradient tensor
4. S-Q) Corr,, highly correlated regions of strain and -
Regardless of size, strength, and resolution, using a
constant threshold adequately tags vortex.
Applied to Unsteady 3-D Ring Vortex
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with vorticity.

travels 20 core widths.

uniform fine solution.

Non-dim

(NACA 0015 Flow-Field)

Final Solution

With the same threshold, non-dim

methods select the proper regions
for refinement and help preserve
vortices over 20 chords downstream.

Unstructured

near-body
responsible

for majority of

early
dissipation
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Vorticity Magnitude (non-optimal), ||w|| = 0.1
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(similar performance by other non-dim methods)

Structured off-body
AMR only reduces
strength by 14%

X = 6 chords
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Method Validation

Basic formulation: Assumptions: ) D
Spatial accuracy

|. Uniform and systematic

Exact solution equals discrete ’ study for advecting &
and error; function of mesh size refinement CarteSIan-'based vortex explores 3 10"
(h), and order of accuracy (p): 2. Smogth and aSyNpEonE wide CFL range. 3 —
| solutions: No shock-like § o
u = wp, + Coh? features; asymptotic when Optimal convergence 2 10° -
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Terminate
Local Error Computation refinement Dynamic Error Computation
if error
Fine grids are compared with their drops Calculated Error on Level

Corresponding Resolution

overlapping coarse parent. below value
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Pressure-based error for Vortex time-step
(locally normalized by pressure)
| | No major overhead;
Fine Solution 150 error computations = | flow solution
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(Current Work)

TRAM: V-22 | /4-scale model

Vorticity Magnitude:
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Feature detection and error estimator
shown to work for isolated vortex.

Successfully terminates refinement when

necessary with error tolerance of 103,

Solution accuracy remains constant, and

resolution is automatically set.

Preliminary solution with refinement controlled
by Non-dim Q (tva = I), without application of

error estimator.

Coherent vortex structures after several blade

revolutions.

Future: Include error-based refinement control,
rather than applying maximum refinement.
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